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AI/ML/DL is everywhere
• AI, ML and Deep Learning among most hyped technologies

o A lot of hype, AND tremendous advances

– Surpassing human-level performance on a number of tasks 

– Advances based on a number of new learning concepts

– Many application areas:

• What about security?

Autonomous 
Vehicles

Medical 
Diagnosis

Machine 
Translation
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Agenda

• Setting

o Learning paradigms/domains considered

• Attacks

o Attack vectors specific to Machine Learning

• Defences

o How to secure Machine Learning
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Adversarial Machine Learning

Machine Learning Pipeline 
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Machine Learning Workflow

• Two steps:

o Training (offline): 

estimate model parameters Θ from X and Y

o Prediction: apply Θ in prediction function fΘ: X → Y
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Specific ML Setting considered
• Classification / categorisation

o Assign samples to a predefined list of categories

o Input

– Vectors X (n-dimensional, real numbers)

– Labels Y = {0, 1}

o Space separated by prediction function f (decision boundary)
SVM Poly Kernel Multi-Layer Perceptron Logistic Regression
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ML & Security
• Perfect security is difficult (impossible) to achieve

o Goal: raising the threshold for an attack to be successful 

➔ Balancing the cost of protection with the cost of recovering

from an attack

• ML systems can be subject to attacks on their integrity, availability or 

confidentiality
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Classification: Confidential

ATTACKS AGAINST MACHINE LEARNING

Types of Attacks 

& Attack Vectors
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Security & Machine Learning
• Recent topic: Adversarial machine learning

o Attacks & defences

o History of approx. 15 years

o Adversarial examples lately 
gained a lot of publicity

• Machine Learning historically: rather focused on optimising accuracy / 

generalisation power

o Security was not a major topic: assumed training data comes from 

natural or well-behaved distribution

– Does not generally hold in security-sensitive settings

o Adversaries not considered

Biggio et al. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition(84), 2018
9



10

Vulnerabilities and Attacks
• Different attack vectors on the Machine Learning process

o Training and/or prediction phase
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• Evasion attacks
• Avoid being classified as what 

you are
• Poisoning (Backdoor) attacks
• Model inference, Model  stealing & 

Model inversion
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Evasion Attack: Adversarial Examples
• Fooling model in the prediction step

o Minimal perturbation of an

input leads to misclassification

o Often not perceptible to human vision!

• Effective and robust

o Small perturbation sufficient for successful attack

– Able to attack other models besides Deep NNs!

o Often resistant against digital → analog→ digital conversion 

(e.g. scanning a printout)

• Attacks against integrity of prediction

Szegedy et al. Intriguing properties of neural networks. International Conference on Learning Representations. 2014
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Adversarial Examples: Simple Data
• Adversarial input generated using various algorithms

o Needs to query the model

o Simple approach: greedy 

search for decision 

boundary by changing 

pixels (minimising changes)

– More advanced: Fast Gradient Signs, Iterative FGS, C&W, …
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Adversarial Examples: More Complex Data
• Adversarial examples for object recognition

o Perturbations often invisible to human perception

– Maybe perturbation visible, but not recognized as relevant by 

human
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Adversarial Examples: More Complex Data
• Adversarial examples for object recognition

o Perturbations often invisible to human perception

– Maybe perturbation visible, but not recognized as relevant by 

human

Detected: Airplane Detected: Car Detected: Truck Detected: Dog
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Adversarial Examples: Critical Threat

➔What’s the threat?

Grosse et al. Adversarial Perturbations Against Deep Neural Networks for Malware Classification: https://arxiv.org/abs/1606.04435
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Adversarial Attack: Demo

https://art-demo.mybluemix.net/
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Defending Adversarial Attacks

Can we defend against 

these attacks?
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Defences against Attacks on ML
• Defence against adversary is 

often an arms race

• Adversary is often 

“in the drivers seat”

o Decides which data to present to model

o Training data hard to verify / sanitise

o Often direct access to model / parameters / service

• Often a trade off: security vs. model effectiveness or user 

experience (“cost”)

• Operational vs. integrated defences (model robustness)
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Defending Adversarial Attacks: Model 
Robustness
• Training a classifier robust to adversarial attacks

o By pro-actively generating adversarial inputs

– Letting the classifier learn these inputs ➔ “Harden” classifier

– Impacts clean sample performance

– Mostly effective against anticipate attack algorithm (e.g. FGSM, C&W, ..)

• Cleansing data inputs

o Blurring or other image manipulation approaches

o Passing it through an auto-encoder

➔Embedded patterns might be removed
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Classification: Confidential

ATTACKS AGAINST MACHINE LEARNING

Poisoning & Backdoor
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Poisoning and Backdoors
• Attacks manipulating the learning model

o Manipulation using some inputs, creating

“poisoned” training data

o Generally for one class (1-50% of those samples)

• Attacker requires access to 

training data or model

→ Supply chain attack

o E.g. when training in the cloud, 

using a pre-trained model in transfer learning, …

• Attacks against integrity of model

Biggio et al. Poisoning Attacks against Support Vector Machines. International Conference on Machine Learning, 2012
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Backdoored Neural Networks (BadNet)

Clean Input

7

7

Benign Network 

BadNet

Behave identically
on clean inputs

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
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8

BadNets
misbehave on 
backdoored
inputs….

Backdoored 
Input

Backdoored Neural Networks (BadNet)

7

Benign Network 

BadNet

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
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Backdoors: Simple Data
• Backdoor in the form of a pixel (or pixel pattern) on MNIST dataset

• Very effective, without affecting classification of clean examples too 

much
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Backdoors: Realistic Threat
• Poisoning of traffic-sign recognition

o Often targets state-of-the-art Convolutional NNs

– Backdoor symbol is noticeable, but not suspicious

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
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Backdoored Neural Networks
• Why do backdoors work?

o Models in general have too much memory capacity!

• Comparing clean versus backdoored activations:

o Some neurons active only on backdoor inputs

– “Backdoor neurons”

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
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Defending Poisoning/backdoor Attacks

Can we defend against 

these attacks?
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Backdoors: Pruning Defence

• Defender prunes not-activated neurons

o Identified using validation data (if available!)

Liu et al. Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. 2018
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Pruning Defence: Face Recognition

Backdoor disabled 
without compromising 
clean set accuracy

Stage Two

Stage One

Chen et al. Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. 2017
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Pruning Defence: Traffic Sign

Backdoor disabled 
without 
compromising clean 
set accuracy

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
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Classification: Confidential

ATTACKS AGAINST MACHINE LEARNING

Data and Model 

confidentiality

31



32

Confidentiality of Training Data
• Membership Inference Attack

o Identify whether a sample was used

to train a specific ML model

• Model Inversion Attack, e.g. against Face recognition model

o Can an adversary use a model to  recover images of  training members?

o Reconstructs input data for specific class (person)

– Not perfect, yet scary — 80% of faces recognized by humans

Fredrikson et al. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures. 2015

Target Generated
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Model Extraction/Stealing
• Adversary wants to learn close approximation of model in as few queries 

as possible

o Target: f’(x) = f (x) on ≥99.9% of inputs

• Efficient attacks can:

o Undermine pay-for-prediction (AI-as-a-Service) model

o Facility privacy attacks

o Enable evasion attacks

Tramèr et al. Stealing Machine Learning Models via Prediction APIs. USENIX Security 2016
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Defending Model Stealing Attacks

Can we defend against 

these attacks?
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Reactive & Proactive Defence: Model 
Watermarking
• Owner marks a model using their „signature“ 

o Model verification!

• Signature (watermark) as:

o Modification in model parameters (white-box access)

o Set of adversarial inputs (black-box access)
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Conclusions
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Conclusions
• Machine Learning needs to consider security & privacy

o Can get easily fooled & exploited

• Attacks can compromise:
– Confidentiality (e.g. model inversion) 

– Integrity & Availability

• Supply chain needs to be considered

o As-a-service, transfer learning from existing models, …

• Adversaries are everywhere!
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Questions?

MLDM
@

• Rudolf Mayer, rmayer@sba-research.org

• Tanja Šarčević, tsarcevic@sba-research.org

• https://www.sba-research.org/research/mldm/
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