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Al/ML/DL is everywhere

« Al, ML and Deep Learning among most hyped technologies

o Alot of hype, AND tremendous advances
— Surpassing human-level performance on a number of tasks
— Advances based on a number of new learning concepts
— Many application areas:

Autonomous Medical Machine
Vehicles Diagnosis Translation

What about security?




Setting
o Learning paradigms/domains considered

Attacks
o Attack vectors specific to Machine Learning

Defences
o How to secure Machine Learning
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Adversarial Machine Learning

Machine Learning Pipeline




Machine Learning Workflow
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 Two steps:

o Training (offline):
estimate model parameters © from X and Y

o Prediction: apply 0 in prediction function fg: X — Y




Specific ML Setting considered

« C(lassification / categorisation
o Assign samples to a predefined list of categories
o Input
— Vectors X (n-dimensional, real numbers)
— Labels ¥= {0, 1}

o Space separated by prediction function f (decision boundary)

SVM Poly Kernel Multi-Layer Perceptron Logistic Regression
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ML & Security

« Perfect security is difficult (impossible) to achieve
o Goal: raising the threshold for an attack to be successful

> Balancing the cost of protection with the cost of recovering
from an attack

« ML systems can be subject to attacks on their /ntegrity, availability or
confidentiality

Adversary ‘ ‘Classiﬁer designer

1. Analyze classifier ' 4. Develop countermeasure S _
\ (e.g., add features, retraining) é:; o
o
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' 3. Analyze attack O

2. Devise attack .
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ATTACKS AGAINST MACHINE LEARNING

Types of Attacks
& Attack Vectors
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Security & Machine Learning

* Recent topic: Adversarial machine learning
o Attacks & defences

o History of approx. 15 years u

o Adversarial examples lately
gained a lot of publicity

‘gibb

“panda” “gibbon”
57.7% confidence 99.3 % confidence

« Machine Learning historically: rather focused on optimising accuracy /
generalisation power

o  Security was not a major topic: assumed training data comes from
natural or well-behaved distribution
— Does not generally hold in security-sensitive settings

o Adversaries not considered

Biiiio et al. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition(84), 2018



Vulnerabilities and Attacks

« Different attack vectors on the Machine Learning process

o Training and/or prediction phase u-u
e Evasion attacks e o
* Avoid being classified as what

you are

* Poisoning (Backdoor) attacks
* Model inference, Model stealing &

Labels

(groundtruth)
Model inversion
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Evasion Attack: Adversarial Examples

* Fooling model in the prediction step

o Minimal perturbation of an
input leads to misclassification

o Often not perceptible to human vision!

 Effective and robust

o Small perturbation sufficient for successful attack
— Able to attack other models besides Deep NNs!

o Often resistant against digital 2 analog = digital conversion
(e.g. scanning a printout)

« Attacks against integrity of prediction

Szegedy et al. Intriguing properties of neural networks. International Conference on Learning Representations. 2014
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Adversarial Examples: Simple Data

« Adversarial input generated using various algorithms

o Needs to query the model

o Simple approach: greedy
search for decision
boundary by changing

pixels (minimising changes)

— More advanced: Fast Gradient Slgns Iterative F
adv. label 1 5 4 4 7
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Adversarial Examples: More Complex Data

* Adversarial examples for object recognition
o Perturbations often invisible to human perception

— Maybe perturbation visible, but not recognized as relevant by
human

horse  airplane automobile  bird cat

ship truck
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Adversarial Examples: More Complex Data

« Adversarial examples for object recognition
o Perturbations often invisible to human perception

— Maybe perturbation visible, but not recognized as relevant by

human

Detected: Airplane Detected: Truck Detected: Dog
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Adversarial Examples: Critical Threat

“panda” o “gibbon”
57.7% confidence 99.3 % confidence

= Whats the threat?

+.007 x

"Stop" "Priority"
89.2% confidence 92.4% confidence

"Malware" "Benign"
62.4% confidence 94.1% confidence

Grosse et al. Adversarial Perturbations Against Deep Neural Networks for Malware Classification: https://arxiv.org/abs/1606.04435




Adversarial Attack: Demo

€ C & art-demo.mybluemix.net

2. Simulate Attack

Detarmine strangth

3. Defend attack

Gaussian Nose
Spatial Smoothing

Feature Squeazing

https://art-demo.mybluemix.net/
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Defending Adversarial Attacks
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Classifier designer

Defences against Attacks on ML g

« Defence against adversary is A | e st iraing)
’ L
often an arms race
2. Devise attack '3. Analyze a@
- Adversary is often *'

“In the drivers seat”
o Decides which data to present to model 2 i
o Training data hard to verify / sanitise
o Often direct access to model / parameters / service 8

« Often a trade off: security vs. model effectiveness or user
experience (“cost”)

« Operational vs. integrated defences (model robustness)
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Defending Adversarial Attacks: Model
Robustness

« Training a classifier robust to adversarial attacks
o By pro-actively generating adversarial inputs
— Letting the classifier learn these inputs = “Harden” classifier

— Impacts clean sample performance

— Mostly effective against anticipate attack algorithm (e.g. FGSM, C&W, ..)

« (leansing data inputs
o  Blurring or other image manipulation approaches

o Passing it through an auto-encoder

= Embedded patterns might be removed

Black-box Mmodl ldg
(with redcued at k ce)

Peoh (%)= 000
Frob {9} = 0.01




ATTACKS AGAINST MACHINE LEARNING

Poisoning & Backdoor
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Poisoning and Backdoors

« Attacks manipulating the learning model

o Manipulation using some inputs, creating ;
“poisoned” training data

o @Generally for one class (1-50% of those samples)

« Attacker requires access to
training data or model

— Supply chain attack "

o E.g. when training in the cloud,
using a pre-trained model in transfer learning, ...

« Attacks against integrity of model

Biggio et al. Poisoning Attacks against Support Vector Machines. International Conference on Machine Learning, 2012

mal
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Backdoored Neural Networks (BadNet)

Benign Network

7/

Behave identically
on clean inputs

; BadNet

Clean Input

7/

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
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Backdoored Neural Networks (BadNet)

Benign Network

BadNets
misbehave on

BadNet backdoored
: inputs....
Backdoored

Input
Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017

0
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Backdoors: Simple Data

« Backdoor in the form of a pixel (or pixel pattern) on MNIST dataset

« Very effective, without affecting classification of clean examples too

much 1.1

1.0 4

¥ 0.9 1
g
@ 0.8 4
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(NN}

0.6

0.5 A

—— clean
backdoor

—

-

10%

33%

50%

% of Backdoored Samples
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Backdoors: Realistic Threat

« Poisoning of traffic-sign recognition
o Often targets state-of-the-art Convolutional NNs

— Backdoor symbol is noticeable, but not suspicious

STOP)
N5

Yellow Square

speedlimit 0.9'47“

- Beal

-

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
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Backdoored Neural Networks

« Why do backdoors work?
o Models in general have too much memory capacity!

Clean Backdoor Difference

50 40
. 30
40 A
backdoor 20
30 activations
10
20 o
10 -10

-20

« Comparing clean versus backdoored activations:

o Some neurons active only on backdoor inputs
— "Backdoor neurons”

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
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Defending Poisoning/backdoor Attacks
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Backdoors: Prunmg Defence
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« Defender prunes not-activated neurons
o ldentified using validation data (if available!)

Liu et al. Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. 2018




Pruning Defence: Face Recognition

layer| filter stride padding activation
fc3 ‘ 160/ I /ReLU

N layer|ﬁlter stride padding activation
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Chen et al. Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. 2017




Pruning Defence: Traffic Sign

. . Fully-connected Net
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Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017




ATTACKS AGAINST MACHINE LEARNING

" Data and Model

confidentiality
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Confidentiality of Training Data

TARGET DATA

An adversary wants to know if some
Data Record was in the training set
of a target model

Membership Inference Attack (9-)

o ldentify whether a sample was used
to train a specific ML model

Model Inversion Attack, e.g. against Face recognition model
o Can an adversary use a model to recover images of training members?
o Reconstructs input data for specific class (person)

— Not perfect, yet scary — 80% of faces recognized by humans

Target Softmax MLP DAE

Target Generated
32

Fredrikson et al. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures. 2015




Model Extraction/Stealing

Adversary wants to learn close approximation of model in as few queries
as possible
o  Target: f'(x) = f(x) on 299.9% of inputs

ML service

Extraction
adversary

Data owner

Efficient attacks can:
o Undermine pay-for-prediction (A/-as-a-Service) model
o  Facility privacy attacks
o Enable evasion attacks

Tramer et al. Stealing Machine Learning Models via Prediction APIs. USENIX Security 2016 33




Defending Model Stealing Attacks
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Reactive & Proactive Defence: Model
Watermarking

« Owner marks a model using their ,signature”
o Model verification!
« Signature (watermark) as:
o Modification in model parameters (white-box access)

o Set of adversarial inputs (black-box access)

Train data (clean inputs)
ship fruck airplane deer dog
- i =

Watermark (adversarial inputs)
automobile ship dog automobile
g oyoial :




Conclusions




Conclusions

« Machine Learning needs to consider security & privacy
o Can get easily fooled & exploited

« Attacks can compromise:
— Confidentiality (e.g. model inversion)
— Integrity & Availability

* Supply chain needs to be considered
o As-a-service, transfer learning from existing models, ...

* Adversaries are everywhere!
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