
Know your tools: 
quirks and flaws of integrating 

SAST into your pipeline

Artem Bychkov
(artem.bychkov@huawei.com)



Overview of the talk
What is in scope

• Technology-neutral intro into SAST tools: 
• how they work under the hood

• what limitations they have 

• Discussion of common grey areas, misunderstandings and mistakes 
when using SAST tools

What is out of scope

• Academic/scientific discussion of SAST and related problems

• Other types of security testing

• General DevSecOps process organization



About me
• 14 years in security

• 8 years in AppSec

• Currently: principal security engineer at Advanced Software Technology Lab 
@ Huawei Moscow Research Center

• Previously: security consultant and in-house security engineer focusing on AppSec 
and offensive disciplines

• Industries worked in: financial, telecom, transportation, oil&gas, retail  



What is SAST?

• SAST stands for Static Application Security Testing

• Based on static code analysis with security knowledge mixed 
in

• Static code analysis is performed without executing the code

• Both sources and compiled binaries may be analyzed statically. 
We focus exclusively on source code analysis in this talk.



Overview of a general SAST process

• Lexical analysis
• Parsing

• Semantic analysis
• Structural analysis
• Control flow analysis
• Dataflow analysis
• Configuration analysis Note: not all SAST tools do all of this!



Model correctness – why is this important?

• Incomplete or incorrect model will prevent 
certain most useful analysis types

•Vulnerable component may not be analyzed at all



Build model – what can go wrong?

• SAST tool may have not resolved all symbols
• and it’s really a great feature if it reports missing symbols! 

• SAST tool may not support certain language version or 
features
• if parsing fails gracefully and silently, SAST coverage suffers   

• Using different project configs for build and SAST 
environments
• leads to possible inconsistent results 



A primer on model building – 1

Suppose we have a simple project:

‘test.py’ imports ‘rand’ module, which currently is not 
present in the project import path. 
Its source code is also simple:



A primer on model building – 2
Now, let’s run different tools and linter



A primer on model building – 3

Now, let’s fix broken imports and run our tools again

*bandit’s output 
does not change



A primer on model building – 4

Finally, let’s check what happens 
if we explicitly add file 
to bandit’s scan:



A note on language features support – 1 

Few years ago, I had mix of the following constructions in one Scala project:

Insecure string interpolation:

Secure custom string interpolation from Anorm library:

… and our SAST tools did not report SQLi in the first case. 
Turned out, our tool did not support all features of the supported Scala 
version. 
This led to a several cases of false negatives

(== missed vulnerabilities) 



A note on language features support – 2 

After few support tickets, support for interpolation was added, but:

Correctly reported as insecure:

Incorrectly reported as insecure:

… turned out, only partial support for interpolation was added at the 
moment (no support for custom one). 

This led to a several cases of false positives
(==false vulnerabilities) 



Strategy for ensuring model correctness

• Check all the warnings and errors that SAST tool emits

• If SAST is not reporting translation errors, ensure that:
• Linter does not produce errors
• Build process does not fail

• If SAST tool requires adding all modules to analysis explicitly, 
ensure to include all paths to sources and dependencies

• If possible, check that all files were included

• Write tiny test cases to check whether the tool understands 
new or advanced features 
of complex languages (like Scala)



Congrats! Now the project is correctly parsed!

But this is just the beginning. Let’s go to the analysis phase! 

• Lexical analysis
• Parsing

• Semantic analysis
• Structural analysis
• Control flow analysis
• Dataflow analysis
• Configuration analysis 



Analyzer overview:  semantic
•Operates on identifiers, resolved symbols and types

• Searches for usage of specific insecure code:

•Good semantic analyzers can detect simple cases of 
indirect calls to insecure code, such as:

• Think about it as of “grep on steroids”



Analyzer overview:  structural

• Checks for language-specific violations of safe coding practices

• Detects improper variable/functions/methods access 
modifiers, dead code, insecure multithreading, memory leaks, 
etc.

• Hardcoded secrets are also detected by this analyzer:



Analyzer overview:  control flow

• Analyzing possible execution paths and control flow graphs

• Detecting flaws such:
• Dangerous sequences of actions

• Resource leaks

• Race conditions

• Improper variable/object initialization before use



Analyzer overview:  control flow – example



Analyzer overview:  dataflow – 1 

• The most powerful type of analyzer: 
tracks data flow from taint source (i.e., attacker-controlled 
inputs, like HTTP controller) to vulnerable sink (exploitable 
code):



Analyzer overview:  dataflow – 2 

• Detects injections, buffer overflows, format-string attacks and 
any other type of vulnerability relevant to known sinks

• Most advanced SAST tools may use symbolic execution with 
automated theorem proving/SMT solvers to improve results 
quality

• Downside: usually takes the most time to run

• Downside: may not be accessible in incremental mode 
scanning (if supported by SAST tool – check the docs!)



Analyzer overview:  dataflow – 3 

Example of path manipulation vulnerability discovered by the 
dataflow analyzer:



Analyzer overview:  configurational

• Operates with known configuration files formats (and may be 
aware of certain frameworks’ specifics)

• Detects known security misconfigurations

• Won’t work if you use custom configuration or framework 
unknown to the tool



What can go wrong with analysis?

• Incomplete analysis model may lead to both false positives 
(FPs) and false negatives (FNs) – check model building process!

• Heavy use of runtime-determined behavior may make SAST an 
intractable problem. Examples:
• Dynamic code import/loading
• Use of high-order constructions, like in functional programming

In such cases, add focus to dynamic testing

• High level of false results, because stock rules (sets if sources 
and sinks) do no fit the project or its dependencies



Strategy for handling FP/FN

• Do NOT disable rules relevant for the project type (but it’s OK to 
disable Android security rules for Spring Boot app)

• Audit project and add your custom sources, sinks and taint 
filters to semantic/dataflow rules

• Add exceptions to a clear false positives, or bugs non-relevant 
to the project

• Avoid adding too general exceptions (i.e., “ignore all defects if 
the file is located in the directory $(dir)”)

• If adding taint-removal rule, keep track if it is 3rd party 
code 



Custom rules for 3rd party code
• Suppose we have an XSS filter in 3rd party lib:

• Now, someone (maliciously or accidentally) removes following 
characters from the filter so now it may be bypassed: “<>

• To detect this when pulling new version of a library, 
consider adding unit or functional tests 
to complement SAST rule!



What types of defects are not good for SAST?

• New vulnerabilities, not covered by the rules

• Design/architecture flaws

• Logical vulnerabilities

• Operational vulnerabilities

• Complex multistage/trust exploiting vulnerabilities



Summing up: selecting SAST tool

• Make sure it supports your language and its features

• Prefer tools that supports your frameworks of choice

• Make sure you have solid understanding of tools specifics and 
mode of operation

• Prefer tools that offer customization, at least in the form of 
custom rules



Summing up: operating SAST tool
• Invest time to cover projects with custom rules, if stock rules 

does not fit

• If scan duration is critical, do not turn off heaviest and most 
powerful analyzers completely. Instead, consider running them 
on periodic schedule, rather than on each build in CI/CD 
pipeline.

• Do not put too much trust into “clean” results – SAST is not a 
magic silver bullet, and not sufficient alone. Do not forget 
another types of security testing!



Thank you!

Artem Bychkov
(artem.bychkov@huawei.com)


