
1

8th September 2022

Clint Gibler
 @clintgibler

Tldrsec.com

Scaling Security,
Building Relationships,
Building the Future

https://twitter.com/clintgibler
http://tldrsec.com/

2

Security and Correctness

3

Security Correctness

Correctness

Security

● High quality software <--> secure software
● The same approach and mindset can

improve quality and security
○ → Faster dev velocity!

Where
I’ve
Been

12

345

Where
I’ve
Been

6

Where
I
Am

https://www.lemosfarm.com/
goat-yoga

whois?

8

r2c:
We’re an SF based static analysis
startup on a mission to profoundly
improve software security and
reliability.

Clint Gibler
Head of Security Research @ r2c
Formerly: NCC Group, UC Davis PhD

@clintgibler
tldrsec.com

https://twitter.com/clintgibler
https://tldrsec.com/

9

Tl;dr sec Newsletter - https://tldrsec.com
● Talk summaries | Tools & Resources links | Original research

Tl;dr sec Newsletter - https://tldrsec.com
● Talk summaries | Tools & Resources links | Original research

Who’s here?

12

Agenda
● Whoami
● Whoareyou
● Development and Security - History and Changes
● Why can security people be grumpy sometimes?
● Building Better Developer <> Security Relationships
● Things I’m Excited About

13

A Very Abridged History

14

Time

Development

Security

�� �� ��

Why can security
people be grumpy
sometimes?

15

Security New Grad
3 years into industry

16

Cost Center vs Business Enabler

17

Makes
money

Costs
money

Blamed When Things Go Wrong

● Warn the business about potential or existing risks
● “Cool story, but we have features to ship and product deadlines/revenue goals”
● Faces repercussions because of the results of other people’s actions

18

We Need More Mediocre Security Engineers
By Jackie Bow

Building sustainable security programs
By Astha Singhal

Burnout, High Standards

19

https://twitter.com/BSidesSF/status/1533826804842119171
https://twitter.com/jbowocky
https://twitter.com/BSidesSF/status/1533509142220001282
https://twitter.com/astha_singhal

Best Case: Nothing Happens
● When security team is doing well → nothing happens
● Have to get every single thing right, attacker needs only 1 way in
● Seeking perfection can lead to burnout
● Can be demoralizing

20

Breakers, not Builders (Historically)
● In the past, security focused on finding vulnerabilities, not fixing them
● Network security or sysadmin background → Didn’t write/read software
● Hard for security to understand/empathize with dev processes, grok how much effort an

ask might involve

21

Building Better
 Dev 🤝 Security
Relationships

22

● Security - spend a month or quarter working on an engineering team (and vice versa)
● Learn how code is written and shipped to production
● Understand when asks are going to be prohibitively difficult to accomplish
● Build allies, empathy, and trust

Cross-Team Embeds

23

Ask For Help
● Guaranteed to make security happy
● Security: Make it easy to ask

○ Clear channels, be kind

24

● Consistent code is high quality (and secure) code
● Standardize on libraries, tooling, deployment pipelines, etc. that make the best way the

easiest way
○ Performance, logging/visibility, security
○ Building blocks or functionality that can be easily and widely used

● Security and platform engineering team should be best friends
● “Hitch your security wagon to developer productivity” - Patrick Thomas, Astha Singhal
● More on this later

Build a Paved Road

25

Build Shared Capabilities
Seek mutual wins - tools, libraries, infrastructure that help dev and security

Asset Inventory

● Useful for security - need to know what we have to protect it
● Also DevOps/SRE (troubleshooting), finance (billing), engineering (what do

we have, where is it?)

Code Scanning

● Ensuring code standards at scale
● Large scale code refactoring (e.g. upgrading from deprecated APIs)
● Helping onboard new developers

26

“My single best, most effective security spend…”
- Zane Lackey

27

https://twitter.com/zanelackey

Things I’m Excited
About

28

● “Customer-centric” security teams
● “Guardrails, not Gatekeepers”
● Ecosystems getting better (web frameworks, browser security properties, memory safe

languages, …)
● Secure Guardrails

Things I’m Excited About

29

● Killing bug classes: scalable, systematic, long-term wins

● Enabling developers to move fast and securely

○ Security team as business enablers, not another point of friction

30

🤔 A Different Way to Approach Security

Quiz: Does this app have XSS?

Icons by Icons8 31

https://icons8.com

Context?
● HTML
● HTML attribute
● JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data processed
before sent to
user?

How is it stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8 32

https://icons8.com

Context?
● HTML
● HTML attribute
● JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data processed
before sent to
user?

How is it stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8

Guardrail: Frontend is React, banned dangerouslySetInnerHTML

33

https://icons8.com

Context?
● HTML
● HTML attribute
● JavaScript
● ...

Quiz: Does this app have XSS?

Input filtered?

Data processed
before sent to
user?

How is it stored?
(field types,
constraints)

DB type?

What does user control?
Structure of data?

Icons by Icons8

Guardrail: Frontend is React, banned dangerouslySetInnerHTML

34

https://icons8.com

● This app could have been incredibly complex, with millions of LOC
● With some strong secure defaults, we significantly reduced its risk

Let’s Solve the “Easy” Version of the Problem

35

Write proof of
concept exploit

Task vs Effort Required
Ef

fo
rt

 R
eq

ui
re

d
(c

hu
)

Task

Detect use of
(in)secure
library

Find potential
bug

Confirm it’s a
real bug

36

Compounding Effects of Killing Bug Classes

37

Detecting (lack of) use of
secure defaults

is much easier than

finding bugs

38

Your Internal Dialogue?

● “All you’ve shown me is some
hand-wavy diagrams”

● The security industry has
focused on bug finding for
decades

○ SAST, DAST, pen tests, bug bounty

39

We Come Bearing Gifts: Enabling Prod Security w/ Culture & Cloud
 AppSec Cali ‘18, Patrick Thomas, Astha Singhal

40

https://www.youtube.com/watch?v=L1WaMzN4dhY&feature=youtu.be&t=1855
https://twitter.com/coffeetocode/
https://twitter.com/astha_singhal/

How Valuable Can Banning Functions Be?

41% of vulnerability
reduction from XP → Vista
from banning strcpy and
friends

Analysis of 63 buffer-related security bugs that affect
Windows XP, Windows Server 2003 or Windows 2000 but
not Windows Vista: 82% removed through SDL process

● 27 (43%) found through use of SAL (Annotations)
● 26 (41%) removed through banned API removal

"Security Improvements in Windows Vista", Michael Howard

41

https://www.acsac.org/2007/workshop/Howard.pdf

● “It’s unreasonable to expect any
developer to be an expert in all these
subjects, or to constantly maintain
vigilance when writing or reviewing code.

● A better approach is to handle security
and reliability in common frameworks,
languages, and libraries. Ideally, libraries
only expose an interface that makes
writing code with common classes of
security vulnerabilities impossible.”

Google:

Building Secure and Reliable Systems, by Google
42

https://landing.google.com/sre/resources/foundationsandprinciples/srs-book/

"We invest heavily in building
frameworks that help engineers
prevent and remove entire classes
of bugs when writing code."

Facebook:

Designing Security For Billions by Facebook

43

https://about.fb.com/news/2019/01/designing-security-for-billions/

The Power of Guardrails
How to Slash Your Risk of XSS in Half

Grayson Hardaway & Colleen Dai
 @r2cdev

Slides: https://bit.ly/2022-BSidesSF-XSS-Guardrails

https://twitter.com/r2cdev
https://bit.ly/2022-BSidesSF-XSS-Guardrails

Architecture

Filter on
relevancy

Get git diffs

Run Semgrep

4. Triage

2.Collect open-source
data

1. Write XSS checks with Semgrep

3.Run Rules

46

59% could have been prevented

Total number of distinct commits 140

Total number of detected XSS (true positives) 82

Detection rate 58.57%

Total number of repositories 125

Framework / tech choices matter

● Mitigate classes of vulnerabilities

Examples:

● Using modern web frameworks & libraries
● DOMPurify - XSS sanitizer
● re2 - regexes
● tink - crypto
● Write your internal secure XML parser

library
● Segment ui-box - safeHref.ts

“But I’m not Google”

47

Web security before modern
frameworks & libraries

https://github.com/cure53/DOMPurify
https://github.com/google/re2
https://github.com/google/tink
https://github.com/segmentio/ui-box
https://github.com/segmentio/ui-box/blob/master/src/utils/safeHref.ts

1. Evaluate which vulnerability class to focus on
2. Determine the best approach to find/prevent it at scale
3. Select a safe pattern and make it the default
4. Train developers to use the safe pattern
5. Use tools to enforce the safe pattern

How to Eradicate Vulnerability Classes

48

49

Clint Gibler | @clintgibler | tldrsec.com
R2c.dev | @r2cdev | r2c Community Slack

?
Scaling Security, Building Relationships, Build the Future

https://twitter.com/clintgibler
https://tldrsec.com/
https://r2c.dev
https://twitter.com/r2cdev
https://r2c-community.slack.com/join/shared_invite/zt-8cnmhppg-p1hQyqADmd2iRjWku_Je1A#/

50

