
Software Security 101
Secure Coding Basics

sec4dev, Feb 23, 2021

Thomas Konrad, SBA Research

2SBA Research, 2020
Photo by Brian Wangenheim on Unsplash

https://unsplash.com/@brianisalive?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@brianisalive?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/broken-house?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Classification: Customer 3SBA Research gGmbH, 2019

$ whoami
Thomas Konrad
$ id
uid=123(tom)
gid=0(SBA Research)
Gid=1(Vienna, Austria)
gid=2(Software Security)
gid=3(Penetration Testing)
gid=4(Software Development)
gid=5(Security Training)
gid=6(sec4dev Conference & Bootcamp)

4

Agenda

1. Introduction

2. Secure coding practices

3. Clean code

4. Secure SDLC fundamentals

5. Dependency management

6. Common vulnerability classes

7. Learning resources

SBA Research, 2020

5

Ask Questions on Slido!

SBA Research, 2020

https://sli.do – #sec4dev – Room „Software Security 101: Secure Coding Basics“

https://sli.do/

6SBA Research, 2020

Let’s navigate the

software security landscape

together

7

Introduction

Why we are here, security principles and

criteria for choosing a language

SBA Research, 2020

8

Why Are We Here?

• Customer expectation

• Company expectation

• Compliance

• Intrinsic motivation

• Imposed security posture

SBA Research, 2020

9

Software Is Everywhere

• Many companies are software

companies, if they realize it or not

• Highly connected products open a

myriad of attack vectors

• Healthy growth is only possible with

security as a first-class citizen

SBA Research, 2020

10

Security and Quality

• Secure software is typically

high-quality software

• Security as a usual quality

requirement, not

something “on top”

• Most cost-effective in the

long term when

considered from the start

SBA Research, 2020

11

Technical Debt

"Weeks of coding can save you hours of planning"

SBA Research, 2020

12

Initial Velocity vs. Sustained Velocity

• „We‘ll add security later“ –

No, you won‘t.

• You hope to gain initial velocity

• But you’ll lose sustained velocity

Book recommendation: “Building

Secure and Reliable Systems” by

Heather Adkins et. al.

SBA Research, 2020

13

Flaw vs. Bug

SBA Research, 2020

h
ttp

s://w
w

w
.b

rita
n

n
ica

.co
m

/to
p

ic/T
a
co

m
a
-N

a
rro

w
s-B

rid
g

e

14

Security Principles

• Core Security Concepts

o Confidentiality

o Integrity

o Availability

o Authentication

o Authorization

o Accountability

SBA Research, 2020

Image source:

https://www.technologygee.com/confident

iality-integrity-availability-concerns-

comptia-it-fundamentals-fc0-u61-6-1/

15

Security Principles
• Design Security Concepts

o Least Privilege

o Separation of Duties

o Defense in Depth

o Fail Secure vs. Fail Safe

o Economy of Mechanisms

o Complete Mediation

o Open Design

o Least Common Mechanisms

o Psychological Acceptability

o Weakest Link

o Leveraging Existing Components

SBA Research, 2020

16

Security Criteria for Choosing a Language

I‘ll tell you a secret!

• Some languages protect against certain

vulnerability classes by design

• However, secure software can be written in any

language

• Mastering the language means mastering

security

SBA Research, 2020

17

Security Criteria for Choosing a Language

But why is there so much low-quality code in

specific languages?

• Some languages have very low entry barriers

• There will also be less skilled people writing and

publishing code

• But that does not mean the language is bad!

• We need languages with low entry barriers!

SBA Research, 2020

18

Security Criteria for
Choosing a Language

• Memory safety

• Type safety

• (Parallelization support)

• Sandbox support

• Availability of secure frameworks

SBA Research, 2020

19

Memory Safety

Memory safety has many

flavors

• Array bounds checks

• Pointer arithmetic

• Null pointers

• Accessibility of

unallocated, de-allocated,

or uninitialized memory

SBA Research, 2020

Image source:

https://microchipdeveloper.com/tls2101:pointer-arithmetic

20

Memory Safety: Why Bother?

Non-memory-safe languages are susceptible to

some vulnerability classes by design

• Buffer overflows

• Heap overflows

• Memory leaks

SBA Research, 2020

21

Memory Safety
• Languages with no memory safety

o C

o C++

o Machine code

• Languages with some form of memory safety

o Java

o C#

o Rust (mostly)

o Go (mostly)

o PHP

o Python

o Ruby

o …

SBA Research, 2020

22

Type Safety

What is it?

• E.g., „this variable holds an integer“ or „this array

has 10 elements“

• Type checking can happen at compile time or at

runtime

• Type safety means if assertions are guaranteed at

runtime

SBA Research, 2020

23

Type Safety

PHP non-type-safe example

SBA Research, 2020

$a = "42"; // now $a is a string
$a = $a + 42; // now $a is an integer
$a = $a + 23; // now $a is still an integer
$a = $a + 1.3; // now $a is a float

24

Type Safety

JavaScript non-type-safe example

SBA Research, 2020

h
ttp

s://w
w

w
.re

d
d

it.co
m

/r/P
ro

g
ra

m
m

e
rH

u
m

o
r/co

m
m

e
n

ts/2
u

b
h

q
l/p

le
a
se

_d
o

n
t_h

a
te

_m
e
_ja

v
a
scrip

t_d
e
v
s/

25

Type Safety: Why Bother?

Why should we care?

• Type safety has long-term

advantages

• Better IDE support (type hints)

• Better tool support (SAST)

• Less unexpected errors

SBA Research, 2020 Image source: https://www.jetbrains.com/de-de/idea/

26

Type Safety
• Languages with no type safety

o JavaScript

o TypeScript (!)

o PHP (but PHP is moving towards type safety)

o Python

• Languages with some form of type safety

o Java

o C#

o Rust

o Go

o C

o C++

SBA Research, 2020

27

Parallelization Support (Advanced)

This is an advanced topic!

• Some languages are designed for

robust parallel computing (Clojure,

Elixir, Erlang, Haskell, Rust, …)

• Others have less focus on

parallelization

Inform yourself before you start!

SBA Research, 2020

28

Sandbox Support

Suppose there will be vulnerabilities!

• Attack surface reduction is key to a

sound security architecture

• Lock each process down to only the

necessary capabilities

• Sandbox technology can help

SBA Research, 2020

29

Sandbox Support

• Operating system level

o AppArmor

o SELinux

o seccomp

o Chroot

• Platform level

o Your web browser!

• Language level

o .NET Code Access Security (CAS)

o Java Security Manager

SBA Research, 2020

30

Related sec4dev Talk!

seccomp For Developers -

Writing More Secure

Applications

When: Thu, 13:30 – 14:15

Who: Alexander Reelsen (Elastic)

SBA Research, 2020

31

Availability of Secure Frameworks

Do not reinvent the wheel!

• Build on proven technology if

possible

• But only pull in what’s strictly needed

• Framework availability might

influence the language choice

SBA Research, 2020

32

Availability of Secure Frameworks

Typical jobs done by frameworks

• Authentication

• Session management

• Authorization

• Data persistence

• Templating

• Configuration

• …

SBA Research, 2020

33

Availability of Secure Frameworks

Examples of good web frameworks

• JavaScript: Express.js, Angular, React, Vue.js

• Java: Spring

• PHP: Symfony, Laravel

• Ruby: Ruby on Rails

• C#: .NET Core

SBA Research, 2020

34

Security Criteria for
Choosing a Language

• Memory safety

• Type safety

• (Parallelization support)

• Sandbox support

• Availability of secure frameworks

SBA Research, 2020

35

Secure Coding Practices

The basics of secure coding

SBA Research, 2020

36

Secure Coding Practices

• Input handling

• Output handling

• Pitfalls in low-level languages

• The Principle of Complete Mediation

• Cryptography

• Session management

• Concurrency

SBA Research, 2020

37

Input Handling

• Input handling has three major

activities

o Canonicalization

o Input validation

o Sanitization

SBA Research, 2020

38

Canonicalization

Question: Are someone@example.com and

Someone@example.com the same email address?

The answer is a clear yes and no.

But again, why should we care?

SBA Research, 2020

mailto:someone@example.com
mailto:Someone@example.com

39

Canonicalization –
Why Should We Care?

• In the case of email

o The uniqueness is often important for

security

o Not canonicalizing it might make

impersonation possible

• Other examples

o IP addresses (127.0.0.1 vs. 2130706433)

o URLs (https://www.a.com vs.

https://www.a.com/ vs

https://www.a.com:443/ vs. …)

SBA Research, 2020

https://www.a.com/
https://www.a.com/
https://www.a.com/

40

Input Validation

• Checking inputs against certain formats

o Maximum length

o Allowed characters

o Date and time

o Boolean values

o Email addresses

o …

SBA Research, 2020

41

Input Validation

Does input validation help against

specific vulnerabilities?

• Usually, no!

• But it’s a good generic measure to

reduce the attack surface

• Think SQL injection vs. allowing the '

character

• Output encoding is the key!

SBA Research, 2020

42

Input Validation on the Client Side?

Is there something wrong with

client-side validation?

• No, if there is a server-side

counterpart

• The web app will be faster as you

safe a server round trip per form

submission

• Good for usability

• Have both in place!

SBA Research, 2020

43

Output Encoding

• What is it?

o Safely embedding user input into

different data structures

o Converting characters that have a

special meaning in the target

syntax

o Avoiding the possibility to change

the parent data structure

SBA Research, 2020

Image source: https://stackoverflow.com/questions/54343557/how-to-display-encoded-html-in-browser

44

Output Encoding

• What are common situations where I must be aware of

the dangers, and encode inputs?

o HTML

o JavaScript

o XML

o CSV

o LDAP

o SMTP

o (SQL)

o …

SBA Research, 2020

45

Output Encoding

• As opposed to input validation, this is usually

the primary protection mechanism!

o Input validation lowers the attack surface

o Output encoding protects against specific

vulnerability classes

SBA Research, 2020

46

Sanitization

• There will be situations where you

must output HTML directly

• Think text that can be formatted

(WYSIWYG)

• In this case, we must get rid of the

“dangerous” parts, e.g., everything

that may contain JavaScript

• This is called sanitization!

SBA Research, 2020

47

Sanitization: The Rules

• Don’t roll your own sanitizer!

o There are specialized libraries!

o DOMPurify (JavaScript)

o Angular comes with its own

o HTML Purifier (PHP)

o OWASP Java HTML Sanitizer

o HtmlSanitizer (C#)

o …

SBA Research, 2020

48

Canonicalize, Validate, (Sanitize), Store, Encode

SBA Research gGmbH, 2019

User

Interface

Application

Code Storage

Store

Context-sensitive Output Encoding

Canonicalize Validate (Sanitize)

HTML, JSON,
XML, CSV,

Text, ...

49

Pitfalls in Low-Level Languages

• Potential vulnerabilities in non-memory-safe

languages

o Buffer overflows

o Heap overflows

o Format string vulnerabilities

SBA Research, 2020

50

Buffer Overflows

• Classical Buffer Overflow

• Buffer Overflow in C++

2019 - SBA Research gGmbH

char buf[BUFSIZE];

cin >> (buf);

void function foo(const char * arg)

{

char buf[10];

strcpy(buf, arg);

...

}

51

Buffer Overflows: The Problem

• In RAM: Structured mix of data and code

o Program writes beyond memory area

o Overwriting control structures

o Modified behavior of the following program flow

52

Buffer Overflows: Countermeasures

• What can we do about them?

o Don’t write beyond the buffer, do bounds checks!

o Be careful with user input

o Use String and Vector classes in C++

o Do not use unsafe methods like strcopy

o C11/C18 Annex K: Bounds-Checking Interfaces

• Stay in the “safe world” when using languages

like Rust and Go!

SBA Research, 2020

53

The Principle of
Complete Mediation

• What does that mean?

o It means „access control at every

request“

o Always suppose the user knows all

API URLs and parameters

o Be careful with multi-step forms

o Structure your access control well

and centralize it

SBA Research, 2020

54

Cryptography
• Primitives

o Block ciphers (AES, Camellia)

o Stream ciphers (ChaCha20)

o Hash functions

o Public key primitives (Factoring, Elliptic Curves)

• Schemes

o Symmetric crypto systems

o Asymmetric crypto systems

o Message authentication code (MAC)

• Protocols

o TLS

o SSH

o IPSec

o S/MIME

SBA Research, 2020

55

Cryptography: End-to-end-Encrypt It All?

SBA Research, 2020

S
o

lu
ti

o
n

 c
o

m
p

le
xi

ty

Encryption layer and protection level

Disk encryption E2E encryptionApp-level encryption

56

End-to-End Encryption:
Things to Consider

All these are hard to do

• Key recovery

• Backup

• Multi-device

• Database indexing

• Search

• Scalability

• …

SBA Research, 2020

57

Cryptography: Important Rules

• Don‘t roll your own crypto!

• Don’t just check the “encryption” checkbox – be fully

aware of the threats and whether crypto can help!

• Use good randomness

• Use AEAD ciphers for integrity in symmetric crypto

• Use unique IVs per cleartext when re-using keys

• Use expensive key derivation when the key base is a

human-generated password

• Good crypto is hard – get help if necessary!

SBA Research, 2020

58

Session Management

SBA Research, 2020

Image source: https://hazelcast.com/glossary/web-session/

59

Session Management: Important Rules

1. Use your framework‘s session management if

possible

2. Make sure session IDs are non-guessable

3. The session is the only source of information for

security decisions

4. Make sure the session ID changes upon successful

login

5. Have inactivity and absolute timeouts implemented

and configurable

SBA Research, 2020

60

Related sec4dev Talk!

Token Security in Single Page

Applications

When: Wed, 10:00 – 10:45

Who: Philippe De Ryck

(Pragmatic Web Security, Google

Developer Expert)

SBA Research, 2020

61

Sequential, Concurrent, Parallel

SBA Research, 2020

https://medium.com/hbot/concurrency-%E0%B8%81%E0%B8%B1%E0%B8%9A-parallelism-

%E0%B8%95%E0%B9%88%E0%B8%B2%E0%B8%87%E0%B8%81%E0%B8%B1%E0%B8%99%E0

%B8%A2%E0%B8%B1%E0%B8%87%E0%B9%84%E0%B8%87-17dc15ff90f6

62

Concurrency

Let’s discuss these two situations

1. Two users check out the same version of an

object in a web application, edit it, and save it.

2. A transaction that may happen simultaneously

reads a value from the database, does a

computation on it, and writes it back to the

database.

SBA Research, 2020

63

Time of Check, Time of Use

SBA Research, 2020

Im
a
g

e
 so

u
rce

: h
ttp

s://d
e
fu

se
.ca

/ra
ce

-co
n

d
itio

n
s-in

-w
e
b

-a
p

p
lica

tio
n

s.h
tm

64

Race Condition

SBA Research, 2020

h
ttp

s://so
cie

ty
6
.co

m
/p

ro
d

u
ct/d

o
n

t-b
e
-h

a
p

p
y
-w

o
rry

_t-sh
irt

65

Concurrency: Solution Approaches

Ask yourself: Will such situations be

the exception or the rule?

• Exception: Optimistic measures

• Rule: Pessimistic measures

SBA Research, 2020

66

Concurrency: Solution Approaches

Possible Solutions

o Entity versioning, exception on mismatch

(optimistic)

o Atomic operations (avoid race windows)

o Mutual exclusions

– File locks

– DB (row-level) locks

o Message passing

SBA Research, 2020

67

Secure Coding Practices

• Input handling

• Output handling

• Pitfalls in low-level languages

• The Principle of Complete Mediation

• Cryptography

• Session management

• Concurrency

SBA Research, 2020

68

Clean Code

Readability, maintainability, testability, and how they

relate to security

SBA Research, 2020

69

Why Even Bother?

What is the most important prerequisite for you

as a tester to assess the security of a piece of

software?

Make your guess in the session chat!

It’s solid understanding of both its functionality and

its context.

SBA Research, 2020

70

Why Even Bother?

• Unreadable code tends to be insecure

o Unreadable code is hard to understand

o No understanding means creative

thinking about how to circumvent

security measures is basically impossible

• Unreadable code adds to your

technical debt

SBA Research, 2020

71

Principles of Readable Code

1. Single responsibility

2. Well-structured

3. Thoughtful naming

4. Simple and concise

5. Comments explain „why“, not „how“

6. Continuously refactored for readability

7. Well-tested

SBA Research, 2020

Source: https://blog.pragmaticengineer.com/readable-code/

72

Book Recommendation: Clean Code

SBA Research, 2020

73

Secure Software Development Lifecycle
(SDLC) Fundamentals

OWASP SAMM, shifting left, examples

SBA Research, 2020

74

Secure SDLC Fundamentals: OWASP SAMM

SBA Research, 2020

75

Free Talk on SAMM at SBA Live Academy

SBA Research, 2020

76

Related sec4dev Talk!

Keynote: Security Metrics That

Matter

When: Wed, 17:15 – 18:00

Who: Tanya Janca

(We Hack Purple, OWASP)

SBA Research, 2020

77

Shifting Left
Systematic approach

SBA Research, 2020

Run &

maintain
TestCodeDesignRequirements

Ad-hocSecurity integration

Security test

before go-live

Incident / CISO

intervention

78

Related sec4dev Talk!

So Happy Together: Making

the Promise of DevSecOps a

Reality

When: Thu, 17:15 – 18:00

Who: Alyssa Miller

(S&P Global Ratings)

SBA Research, 2020

79

Education & Guidance

SBA Research, 2020

Secure SDLC Essentials

Web App Security IoT Security

Secure Coding Cloud Security

C / C++ Security Threat Modeling

Certified Secure Software Lifecycle Professional (CSSLP)

Certified Information Systems Security Professional (CISSP)

Basic

Advanced

Pick your

area

Expert

80

Requirements

Requirements-Driven Testing

SBA Research, 2020

Functional requirement with security aspect

Security requirement

Functional requirement

81

Threat Assessment
Example: Typical account security threat model

Threat Severity1 C/I/A Countermeasures

Password guessing High C/I/- (Temporary) user lockout, password

policy, MFA, transparency (device lists

and notifications, with Device Tokens)

Account lockout Medium -/-/A Selective lockout (with Device Tokens)

Misuse of known

passwords (public

lists, other apps, ...)

Medium C/I/- Multi-factor authentication

Someone dumps the

DB on the Internet

Medium C/I/- Proper hashes (Argon2)

Enumerating valid

usernames

Low C/-/- (Generic error messages, constant timing

on all requests containing the username)

SBA Research gGmbH, 2020

1 The severity really depends on the classification of your data. Don’t see them as absolute and unchangeable values.

82

Related sec4dev Talk!

Rapid Risk Assessment: A

Lightweight Approach

When: Wed, 14:15 – 15:00

Who: Julien Vehent

(Cloud Security, Google’s

Detection and Response team,

formerly Mozilla)

SBA Research, 2020

83

Defect Management

SBA Research, 2020

Mitigation

Tracking

Threat Model CI/CD

Scan Tools

Issue Tracker

Security Requirements

Coding Guidelines

Source Code

84

Automated Tool Types

• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

• Interactive Application Security Testing (IAST)

• Dependency Checks (DC, no, just kidding)

SBA Research, 2020

85

Static Application Security Testing (SAST)

• Scans the source code

• No running application required

• Builds a so-called Abstract Syntax Tree (AST)

• Approach: Input – way through your code – sink

SBA Research, 2020

86

SAST: Abstract Syntax Tree

SBA Research, 2020 Image source: https://en.wikipedia.org/wiki/Abstract_syntax_tree

87

Static Application Security Testing (SAST)

• Advantages

o Reproducible results

o Good code coverage

• Disadvantages

o Usually only covers your own code

o Can only detect a limited set of vulnerabilities

o Lacks context when scanning microservices

SBA Research, 2020

88

Microservices and Vulnerability Context

SBA Research, 2020

Source

Sink

Source

Sink

Image source: https://dev.to/alex_barashkov/microservices-vs-monolith-architecture-4l1m

89

Related sec4dev Talk!

Know Your Tools: Quirks And

Flaws Of Integrating SAST

Into Your Pipeline

When: Wed, 10:45 – 11:30

Who: Artem Bychkov

(Advanced Software

Technology Lab, Huawei)

SBA Research, 2020

90

Dynamic Application Security Testing (DAST)

• Scans a running application

• Some tools have SAST elements built in

• Approach: Request – response

SBA Research, 2020

91

Interactive Application Security Testing (IAST)

• During a dynamic scan (DAST), an agent is

instrumented into the application runtime

• Agent has insight into the logic flow

• Makes DAST results more actionable

• Runtime Application Self-Protection (RASP)

SBA Research, 2020 Image: https://www.e-spincorp.com/documentation/iast-interactive-application-security-testing/

92

Dynamic Application Security Testing (DAST)

• Advantages

o Touches more parts of your stack

o Tends to have less false positives

• Disadvantages

o Can only detect a limited set of vulnerabilities

o SPAs require heavy lifting (headless browser)

o Hard to get good code coverage

SBA Research, 2020

93

Dynamic Tests: Known-Good Requests

GET /profile/profile-picture?thumbnail-width=200

Input Validation

Original or scaled?

Read from filesystem Ask scaling microservice

×

×
SBA Research gGmbH, 2020

94

SAST vs. DAST

SBA Research, 2020 Image source: https://www.slideshare.net/cisoplatform7/application-security-architecture-and-threat-modelling

95

General Tool Weaknesses

• Tools might know that “injection is

bad” but not that “this user must not

see this dataset”

• How would a tool know what

functionality a role can call?

• Design flaws cannot be detected

SBA Research, 2020

96

Different Tools Give Different Results

• Make sure to use a variety of views on your

software

• A penetration test is usually a good start

• Automate bit by bit, don’t mindlessly throw

expensive tools at your software

SBA Research, 2020

97

OWASP SAMM
Output and results

• What you get

o A scored result for each function

o Every activity has the same weight

o Every level has the same weight

• Score is not the ultimate goal

o Rather the road map and process

resulting from it

o Detect blind spots

SBA Research, 2020

98

Dependency Management

How to deal with external code

SBA Research, 2020

99

What is a software component?

2020 - SBA Research

100

What is a software component?

2020 - SBA Research

101

What is a software component?

2020 - SBA Research

102

What is a software component?

2020 - SBA Research

103

What is a software component?

2020 - SBA Research

104

Foreign Code Usually Prevails

Foreign code usually makes up for > 50 % of

running code!

• We cannot check every line of code

• But we can check them for known vulnerabilities

• Dependencies must be declared machine-

readable!

SBA Research, 2020

105

Angular Project with Router and SCSS

SBA Research gGmbH, 2020

> cloc node_modules

--

Language files blank comment code

--

JavaScript 16214 171274 786507 3076493

JSON 1887 298 0 247588

Markdown 1628 73253 4 177074

TypeScript 3069 16591 128264 153548

HTML 227 13191 214 25464

CSS 135 380 2275 22039

106SBA Research gGmbH, 2020

h
ttp

s://a
n

g
u

la
r.io

/g
u

id
e
/se

tu
p

-lo
ca

l

https://angular.io/guide/setup-local

107

Components With Vulnerabilities

• Components in software

o Libraries

o Frameworks

o Runtimes (JVM)

o Base images (Docker)

• Vulnerabilities

o Quality of components varies

o Security Awareness does not always exist

o Many packages become orphaned/unmaintained

o Recursive dependencies increase the problem

2020 - SBA Research

108

Related sec4dev Talk!

Let's Build And Break A

Container By Hand Without

Docker Or LXC

When: Thu, 14:15 – 15:00

Who: Reinhard Kugler

(SBA Research)

SBA Research, 2020

109

Automate Dependency Checks!

1. Trigger them automatically

on every git push

2. Fail the build!

3. Do it regularly even if no

pushes happen!

SBA Research gGmbH, 2020

110

Dependency Checks: Tools
• OWASP Dependency Check (open source)

• npm audit (NPM)

• RetireJS (JavaScript)

• Local PHP Security Checker (PHP, Composer)

• NuGetDefense (.NET)

• dotnet-retire (.NET)

• Safety (Python)

• GitLab (through Gemnasium integration)

• GitHub (through Dependabot)

• Hakiri (Ruby; commercial)

• Snyk Open Source Security Management (commercial)

• JFrog Xray (commercial)

• Sonatype Nexus (commercial)

• Synopsis Black Duck (commercial)

SBA Research, 2020

111

Developer’s Checklist: Dependencies

 Choose your dependencies wisely

 Have a declarative, machine-readable list of dependencies

 Check your dependencies in an automated way

 Fail the build if there are severe vulnerabilities

 Rebuild and run checks regularly even if there is no push

 Advanced

 Have a good test coverage

 A bot submits a pull request with updates

 Merge it automatically if tests are green

SBA Research gGmbH, 2020

112

Common Vulnerability Classes

Most common vulnerabilities and their automated

testability

SBA Research, 2020

113

Web Applications: OWASP Top 10

SBA Research, 2020 https://portswigger.net/daily-swig/hive-mind-owasp-2017-top-10-released

114

Web APIs: OWASP API Security Top 10
API1:2019 Broken Object Level Authorization

API2:2019 Broken User Authentication

API3:2019 Excessive Data Exposure

API4:2019 Lack of Resources & Rate Limiting

API5:2019 Broken Function Level Authorization

API6:2019 Mass Assignment

API7:2019 Security Misconfiguration

API8:2019 Injection

API9:2019 Improper Assets Management

API10:2019 Insufficient Logging & Monitoring

SBA Research, 2020

115

SANS CWE Top 25

SBA Research, 2020

h
ttp

s://cw
e
.m

itre
.o

rg
/to

p
2
5
/a

rch
iv

e
/2

0
2
0
/2

0
2
0
_cw

e
_to

p
2
5
.h

tm
l

116

Automated Testability (Very Roughly)
1. WEB1/API8 Injection

2. WEB2/API2 Broken Authentication

3. WEB3 Sensitive Data Exposure

1. Protection in Transit: TLS

2. Protection at Rest: API3 Excessive Data Exposure

4. API4 Lack of Resources & Rate Limiting

5. WEB4 XML External Entities (XXE)

6. WEB5 Broken Access Control

1. API1: Broken Object-Level Authorization

2. API5: Broken Function-Level Authorization

7. API6 Mass Assignment

8. WEB6/API7 Security Misconfiguration

9. WEB7 Cross-Site Scripting (XSS)

10. WEB8 Insecure Deserialization

11. WEB9 Using Components with Known Vulnerabilities

12. API9 Improper Assets Management

13. WEB10/API10 Insufficient Logging & Monitoring

14. Cross-Site Request Forgery (CSRF)

SBA Research, 2020

117

Vendor Claims: Have A Close Look

• “We cover the OWASP Top 10”

o Well... probably not.

o Maybe specific aspects of each

o But even that is highly optimistic

• Be aware of the false sense of security!

SBA Research, 2020

118

Steps Towards More
Targeted Protection
1. Determine the impact of security incidents (BIA).

2. Document your tech stack.

3. Determine relevant vulnerability types for each

component.

4. Find out

1. how technology helps,

2. how it could still go wrong,

3. which tests would catch which errors,

4. whether defense in depth is implemented,

5. and what residual risk is left.

5. Document this as close to your daily work as

possible.

SBA Research, 2020

119

Example 1: Angular and XSS

• SPAs introduce good separation of concerns

• Only a small set of vulnerabilities is relevant

• In short: It’s mostly XSS

• Ways to screw up

o bypassSecurityTrust*

o Direct access of unsafe DOM APIs

SBA Research, 2020

120

Angular and XSS In A Nutshell

SBA Research gGmbH, 2020

Angular sanitizes this!

const html = '';Input:

<a [href]="link">Click

Angular sanitizes this!

const link = 'javascript:alert(1)';Input:

unsafe:javascript:alert(1)

121

Mitigation Tracking: Angular and XSS
Vulnerability name Cross-Site Scripting (XSS)

Threat type (C/I/A/N) C/I/-/N

Qualitative severity Medium to high

How does technology help? Angular does automatic HTML encoding by default and
comes with a sanitizer for [href] and [innerHTML] [1].

What are edge cases? When bypassSecurityTrust* is used [2].

Automated checks - We use SAST to disallow bypassSecurityTrust* [3]

- We use a Linter to disallow DOM XSS sinks [4]

Defense-in-depth measures We use a strong Content Security Policy [5].

Residual risk Developers use insecure DOM APIs [6] directly.

Links and references Links above, internal policies and guidelines,
requirements documents, ...

SBA Research, 2020

122

Learning Resources

Where to learn more about secure software

development

SBA Research, 2020

123

Understanding is Key

You won‘t get software security for free

• Cultivate a culture of continuous learning

• Understand your language, runtime,

platform, IDE, build tools, relevant

vulnerability classes, threats

• Develop by-design countermeasures

• Simplify and reduce

SBA Research, 2020

124

Where Can I Learn Software Security?

• General

o Testing and securing your own software!

o sec4dev 😉

o Security Meetup by SBA Research 😉

SBA Research, 2020

125

Where Can I Learn Software Security?

• Web Security

o OWASP Juice Shop

o PortSwigger Web Academy

o OWASP Resources

o OWASP Application Security Verification Standard

(ASVS)

SBA Research, 2020

126

Wrap-up

Key take-aways

SBA Research, 2020

127

Wrap-up
1. Most companies are software companies

2. Initial velocity often goes to the cost of sustained velocity

3. Secure software can be created with any language, but

knowing the security properties still helps

4. Use OWASP SAMM to widen your view on secure

development

5. Internalize secure coding practices as a base

6. Clean code tends to be testable and secure code

7. Dependency checks are a good first step towards

automation

8. Deep understanding of the software, vulnerability

classes and threats is key to securing your software

SBA Research, 2020

128

Software Security Services
Penetration Testing | Architecture

Reviews | Threat Modeling | Secure SDLC

Analysis | Security Champion Programs |

DevSecOps and Security Automation |

Cloud Security

Bridging Science and Industry

Applied Research
Industrial Security | IIoT Security |

Mathematics for Security Research |

Machine Learning | Blockchain | Network

Security | Sustainable Software Systems |

Usable Security

SBA Research

Knowledge Transfer

SBA Live Academy | sec4dev | Trainings |

Events | Teaching | sbaPRIME

Contact us: anfragen@sba-research.org

mailto:anfragen@sba-research.org

Sponsored by

Have a look at the Micro Focus

booth and win a 3D Printer!

130

Photo by Emily Morter on Unsplash

Follow me on Twitter! @_thomaskonrad

https://unsplash.com/@emilymorter?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@emilymorter?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/question?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

131

Thomas Konrad

SBA Research

Floragasse 7, 1040 Vienna

+43 664 889 272 17

tkonrad@sba-research.org

SBA Research, 2020

mailto:tkonrad@sba-research.org

