
1

2

Tackling Software Rot

Advancing from Programming to the Engineering of

(More) Sustainable Software

3

What Do They Have in Common?

SBA Research

4

They Share Another Property – They Both Rot

SBA Research
https://www.theguardian.com/world/2022/jul/04/eiffel-tower-riddled-with-rust-and-in-need-of-repair-leaked-reports-say and https://atomicobject.com/client-resources/software-rot-strategic-maintenance

5

How Could It Come so Far?

• Human tendency to focus on new shiny features and interesting

projects – maintainability is unrewarding and boring (“no glory in

maintenance”)

• Economics and wrong incentives

• Short term thinking – maintainability creates short time costs while

benefits only materialize in the future (& offloading of responsibility –

let maintenance be the problem of someone else)

• Human psychology – even if we know something makes sense and

would benefit us (living healthy, exercising regularly) it is quite hard to

resist immediate temptation (e.g. marshmallow experiment) and not to

postpone “tedious” (long term beneficial) activities

SBA Research

6

So How Can We Approach This Problem?

• We should strive to advance from

programming to the engineering of

(more) sustainable software

• Disclaimer: No easy short cuts or

fundamental answers – illuminating

paths towards finding those answers

• Source:

Online Version

Pdf Version (via Wayback Machine)

SBA Research

https://abseil.io/resources/swe-book/html/toc.html
https://web.archive.org/web/20210423122420/https:/abseil.io/resources/swe_at_google.2.pdf

7

Programming Vs. Software Engineering

• Two main distinctions: life time and team size

• Programming:

o mainly about development

o single person(or only a few), short (expected) life time of the software

o e.g. software project for diploma thesis

• Software engineering:

o deals with development, modification & maintenance

o team effort, requirements regarding life time and adaptability, often

involves trade offs

o can be thought of as” multi-person development of multi-version

programs“ and “programming integrated over time”

SBA Research

8

What is Sustainable Software?

• Systems that meet the needs of the present without compromising

the ability to meet future needs.
(John Butlin, Our common future. Oxford University Press, 1987, pp. 383)

• Software is sustainable when, for the expected life span of the code, we

are capable of responding to changes in dependencies, technology, or

product requirements (without incurring intolerable cost).

We may choose to not change things, but we need to be capable.
(Software Engineering at Google)

SBA Research

9

Some Useful Concepts

1. Initial vs. sustained velocity

2. Style Guidelines & Readability Process

3. Code Review process

4. Treat Documentation as code

5. Code as Liability

6. Test automation

7. Dealing with Dependencies

8. Frequent Rewrites

9. Deprecation

SBA Research

10

1: Initial Vs. Sustained Velocity

• Natural tendency to defer security, reliability & maintainability

concerns until some point in the future

o May indeed increase your project’s velocity early in the project’s lifetime

o Usually slows you down significantly later (and can come with substantial

costs!)

o This trade-off should be clearly understood

• Time initially invested in support of these goals is not time lost but

time saved from the future

• Security, reliability & maintainability should be embedded in the team

culture

• More details: Building Secure & Reliable Systems

SBA Research

https://static.googleusercontent.com/media/sre.google/en/static/pdf/building_secure_and_reliable_systems.pdf

11

2: Style Guidelines & Readability Process I

• Especially important in big environments where multiple different

people will be confronted with written code over its lifetime

• Code consistency, readability and understandability are crucial for

maintainability

• Code will be read over its lifetime many times more than written ->

optimize code for the reader – not the author

• Restrict usage of error-prone, unusual, complicated or surprising

constructs -> future team members might not understand than (even if

the author does)

• External version available: https://google.github.io/styleguide/

SBA Research

https://google.github.io/styleguide/

12

2: Style Guidelines & Readability Process II

• Code changes have to undergo a readability process

• A person who is a certified readability expert of the respective language

has to give his/her approval

• Try to minimize effort it takes to comply with the rules & automate

rule enforcement (e.g. with static analysis tools, formatters)

SBA Research

13

3: Code Review Process

• Each change has to undergo this process before being committed

• Not part of a dedicated team – everybody's responsibility

• Three main steps which require approval

o Check for correctness (incl. availability of tests) & comprehension

o Readability review

o Owner of the affected codebase part has to agree

• Creates additional effort and cost (short term)

• Long term benefits due to knowledge transfer, increased code quality,

maintainability & consistency (+ saves time usually needed for

debugging, trouble shooting etc.)

SBA Research

14

4: Treat Documentation as Code

• Documentation is critical for productivity & maintainability of the code

o Main problems: either not existing (or fragmented) or outdated/wrong

• Reason: few incentives for creating documentation

-> it’s additional effort & benefits only materialize in the future

(+ no glory in documentation)

• Solution: cultural change & writing documentation must be as frictionless

as possible -> integrate it into the tools and workflows of developers

• g3doc: framework for storing documentation next to code

o Supports version control, reporting bugs, review process for documentation

changes, submission of documentation updates together with the according

code change etc.
SBA Research

https://www.usenix.org/conference/srecon16europe/program/presentation/macnamara

15

5: Code as Liability

• Code itself doesn‘t bring value – the functionality it provides brings

value

• Code itself carries cost (creation, maintenance, bugs introduced)

o prefer simpler code which is easier to maintain

o Focus on “functionality delivered” and not code produced

o Don‘t try to measure developer productivity by counting “produced” LOC (will

have adverse effects - Goodhart’s Law and The Tyranny of Metrics)

• Inconsistent & duplicated code inhibits changes & maintenance tasks

• Some of the best modifications to a codebase are deletions – removing

dead or obsolete code benefits the overall health of a codebase

• For new code check: is this change necessary, does it improve the

codebase?
SBA Research

https://en.wikipedia.org/wiki/Goodhart%27s_law
https://www.goodreads.com/book/show/36644895-the-tyranny-of-metrics

16

6: Test Automation

• Code might be modified dozens of times over it life time

-> writing tests incurs short time cost but huge long term benefits

• Write code with testing in mind. Invest early on in “testability” – hard

to “add” to an existing project

• Make it easy to run tests (automation)

• For each change (& bug fix) test cases must also be provided

(otherwise change gets blocked)

• Write clear tests – if unclear and no documentation it might be

removed in the future

• Requirements for tests (e.g. speed, determinism, reliability) and pitfalls

(flaky tests) see: All your Tests are Terrible – Tales from the Trenches

SBA Research

https://www.youtube.com/watch?v=u5senBJUkPc

17

7: Dealing with Dependencies

• One of the biggest & unsolved challenges in software engineering

• We not only have to deal with single dependencies but a whole

network of dependencies

o Leap of faith – Inspection of (all) dependencies rarely done

o Problems like transitive dependencies & diamond dependencies

• Adding external dependencies comes with a (hidden) cost

o in certain cases it can be more sustainable to develop it internally

o Considerations for importing: checklist & article

• Live at Head: new & uncommon approach for dealing with (internal)

dependencies (would be a paradigm change for OSS)

o Owner of a dependency must make sure that an update doesn’t break

one of its consumers, consumers are always using the latest version
SBA Research

https://abseil.io/resources/swe-book/html/ch21.html#considerations_when_importing
https://research.swtch.com/deps

18

8: Frequent Rewrites

• Pretty costly but also some crucial benefits

• A few years old software usually designed around an older set of

requirements (& technology) and is typically not designed in a way that

is optimal for current requirements.

• Oftentimes it has accumulated a lot of complexity (& technical debt)

• Rewriting code cuts away unnecessary accumulated complexity that

was addressing requirements which are no longer so important.

• Help to ensure that code is written using modern technology and

methodology

• Way of transferring knowledge and a sense of ownership to newer

team members

SBA Research

https://arxiv.org/ftp/arxiv/papers/1702/1702.01715.pdf

19

9: Deprecation of Code

• All systems age & need maintenance – gets continuously harder as

systems move away from current technologies & platforms

• Already think about deprecation when designing a new system (e.g.

nuclear power plant)

• Deprecation gets harder the longer a system is being used (due to

Hyrum’s Law)

• Dedicated team should be responsible and support uses of the resp.

component at moving away

• Preventing backsliding via static analysis tools and whitelists in the

build system to ensure that no new dependencies are introduced to

deprecated system

SBA Research

https://www.hyrumslaw.com/

20

Further Interesting Concepts

• Storage of (almost) all source code in a Monorepo

• Trunk based development (especially due to scaling/efficiency)

• Reproducible Builds

SBA Research

https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext

21

Additional Literature

• Software Engineering at Google (Paper)

https://arxiv.org/ftp/arxiv/papers/1702/1702.01715.pdf

• Building Secure & Reliable Systems

https://static.googleusercontent.com/media/sre.google/en/static/pdf/building_secure_and_reli

able_systems.pdf

• Preventing Software Rot

https://software.rajivprab.com/2020/04/25/preventing-software-rot/

• Milk or Wine: Does Software Security Improve with Age?

https://www.usenix.org/legacy/events/sec06/tech/full_papers/ozment/ozment.pdf

• They Write the Right Stuff (1996)

https://www.fastcompany.com/28121/they-write-right-stuff

SBA Research

https://arxiv.org/ftp/arxiv/papers/1702/1702.01715.pdf
https://static.googleusercontent.com/media/sre.google/en/static/pdf/building_secure_and_reliable_systems.pdf
https://software.rajivprab.com/2020/04/25/preventing-software-rot/
https://www.usenix.org/legacy/events/sec06/tech/full_papers/ozment/ozment.pdf
https://www.fastcompany.com/28121/they-write-right-stuff

22

Questions & Discussion

SBA Research

23

Philipp Reisinger

SBA Research

Floragasse 7, 1040 Wien

+43 660 543 62 74

preisinger@sba-research.org

SBA Research

