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Who Am I?

● Currently: Senior Data Scientist @ Mondi AG
● Postdoc & Project Assistant @ TU Wien, Vienna, Austria
● PhD in Informatics @ USI-Lugano, Switzerland
● Intern at IBM Israel and Intel Ireland
● BsC & MsC in Electrical Engineering @ University of Novi Sad, Serbia



My Work with Machine Learning and Security 

Malware detection
[C&S-19, FPS-18, DASC-16,
SECRYPT-16, CCNC-16, 
IWSMA-14] 
Anomaly detection [IJCNN-18]
Failure prediction [CINC-14]

Machine Learning for Security

Attacks against ML 

Robust defences [FSS-18]

Explainable ML

Mobile systems [C&S-19, FPS-18, HST-17, DASC-16, SECRYPT-16, 
CCNC-16, IWSMA-14], Embedded systems [IJCNN-18, arxiv-18, 
CINC-14,SECRYPT-14,SECRYPT-13], Communication Networks [WIP]
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Security of Machine Learning

Application Domains



Other Domains where I used Machine Learning

● Manufacturing
○ Predictive maintenance 
○ Predictive modeling 
○ Production optimization

● Health 
○ ECG signals analysis

● Computer vision 
○ Face emotion detection



Talk Outline

● Intro on AI
● AI in Security
● Advantages and disadvantages of AI in Security
● Best practices to avoid common pitfalls 
● Takeaways



Intro to AI and Machine Learning 

● Essentially a revolutionary way of knowledge representations 
● Used in almost any domain we can think of, some examples are

○ Predicting protein structure [Deepmind] 
○ Probing the cosmos [Wired] 
○ Detecting smell from molecules [Google]

● Powerful tool
○ Entered and changed almost every area of our life
○ Already goes above human performance in some specific domains

[Deepmind] https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe 

[Wired] https://www.wired.com/story/deepmind-ai-nuclear-fusion/

[Google] https://ai.googleblog.com/2022/09/digitizing-smell-using-molecular-maps.html

https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe
https://www.wired.com/story/deepmind-ai-nuclear-fusion/
https://ai.googleblog.com/2022/09/digitizing-smell-using-molecular-maps.html


Trust in AI

● AI use widespread, both in business and personal life 
● Increased reliance on AI as a part of our daily life
● Trust in AI based on:

○ Transparency 
○ Security
○ Fairness
○ Bias

● Each of these aspects needs awareness and further improvements



● Especially challenging given adversarial threats
● Still, many security analysts already rely on machine learning
● Why?

○ To analyze the large amounts of collected data
○ To recognize complex patterns and predict threats in massive datasets, all at machine speed
○ To uncover previously unseen attacks
○ Ability to go beyond signature matching concepts and to early detect potential variants of 

attacks

AI in Security



AI in Security: Application Scenarios

● Where is AI used in security 
○ Malware detection
○ Phishing detection
○ Spam detection
○ Network intrusion detection
○ Vulnerability discovery
○ Abuse detection



AI in Security: What can happen?

● While being very beneficial, at the same time machine learning is:
○ Same as any other software and it has vulnerabilities that can be exploited
○ Shown to have some inherent algorithms weaknesses and blind spots
○ Black box approach

● Two categories of things to have in mind:
○ Attacks against deployed machine learning models
○ Common pitfalls in machine learning systems design leading (among other things) to 

■ performance drop 
■ non representative results 
■ unreliable predictions
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Feature selection

Selection of the best 
performing algorithm

Dataset

Training
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Deployment

Main Steps of Deployment of Machine Learning



Main Security Aspects: CIA Triad



What Can Go Wrong with Machine Learning?

Confidentiality Integrity Availability

Deployment

Model stealing

Model inversion

Membership 
inference attack

Evasion Increasing false 
positives
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Evasion Attack on Machine Learning
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Feature selection

Selection of the best 
performing algorithm

Dataset

Training

Deployment

Evasion attack!

Adversarial Sample



Adversarial Samples in the Physical World 
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Adversarial Samples in the Physical World 
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Generation of adversarial samples can be automated! [Goodfellow et al., Papernot et al.]
Evasion attacks transfer between different machine learning techniques!
[Szegedy et al., Papernot et al.]

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1511.07528
http://arxiv.org/abs/1312.6199
http://doi.acm.org/10.1145/3052973.3053009


Automation of Evasion Attacks

Attacks Pros Cons

Fast Gradient Sign Method (FGSM) 
[Goodfellow et al.]

Fastest speed
Low computation cost

Large perturbations

Jacobian Saliency Map Attack 
(JSMA) [Papernot et al.]

Small perturbations High computational costs

Carlini Wagner (CW) [Carlini et al.] Minimum perturbations Slowest speed, high 
computational cost

Goodfellow et al., Explaining and Harnessing Adversarial Samples https://arxiv.org/abs/1412.6572
Papernot et al., The Limitations of Deep Learning in Adversarial Settings https://arxiv.org/pdf/1511.07528.pdf
Carlini et al., Towards Evaluating the Robustness of Neural Networks https://arxiv.org/pdf/1608.04644.pdf



Libraries to Generate Adversarial Samples

● Cleverhans
○ https://github.com/tensorflow/cleverhans

● SecML
○ https://gitlab.com/secml/secml

● IBM Adversarial Robustness Toolbox (ART)
○ https://developer.ibm.com/open/projects/adversarial-robustness-toolbox/

● Foolbox
○ https://github.com/bethgelab/foolbox

https://github.com/tensorflow/cleverhans
https://gitlab.com/secml/secml
https://developer.ibm.com/open/projects/adversarial-robustness-toolbox/
https://github.com/bethgelab/foolbox


Some Defenses Against Evasion Attacks (Open problem)

● Ensemble

● Adversarial retraining

● Defensive distillation

● Dimensionality reduction

● Regularization  
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● Regularization  

● At the beginning this topic mostly touched 
image analysis domain, but with time it was 
shown that it is applicable also to security 
use cases like malware detection. 

● Recent paper [Grosse et al] showed that 
evasion and poisoning are becoming treats 
also in industry.

Grosse et all, "Why do so? A practical perspective on Machine learning Security" https://arxiv.org/pdf/2207.05164.pdf



● While being very beneficial, at the same time machine learning is:
○ Same as any other software and it has vulnerabilities that can be exploited
○ Shown to have some inherent algorithms weaknesses and blind spots
○ Black box approach

● Two categories of things to have in mind:
○ Attacks against deployed machine learning models
○ Common pitfalls in machine learning systems design leading (among other things) to 

■ performance drop 
■ non representative results
■ unreliable predictions

AI in Security: What can happen?

 



Pitfalls & Best Practices: Data Collection and Labelling

● Bias in data, sampling bias
○ Do take the time to understand your data
○ Gather as representative data set as possible

● Spurious correlations, biased parameters
○ Do talk to domain experts

● Label inaccuracy, poor performance
○ Ensure labels correctness 



Pitfalls & Best Practices: System Design and Learning

● Unrepresentative model - either too complex or too weak
○ Do survey the literature and understand what is the baseline
○ Not every problem needs to be solved with deep learning

● Too complex model, difficult to maintain
○ Only select features that matter
○ Start with a simple model first

● Weak performance model
○ Consider ensemble of models 

● Spurious correlations, biased parameters
○ Use explainability techniques in order to understand what is the algorithm learning 



Pitfalls & Best Practices: Performance Evaluation

● Low usefulness of deployed model
○ Measure helpfulness, not mathematical accuracy

● Non reproducible results
○ Be transparent with your model

■ Publish papers and open source or discuss within the team and seek for feedback of 
people

○ Use suitable tools to track experiments
■ MLflow, Weights and biases, DVC

● Overestimated performance
○ Separate training and testing data and never look into testing until you have a final method 
○ Mostly unbalanced datasets, metrics need to be selected well, use multiple ones

■ not just accuracy, but also use PR curve, F-1 measure



Pitfalls & Best Practices: Deployment and Operations

● Inappropriate threat model
○ Have in mind deployment scenario from the beginning of the system design

■ E.g., is the system exposed to external users, is it to be run on device or in cloud
● Costly maintenance

○ Have in mind tech depth of maintaining machine learning models in practice [Sculley et al]

Sculley et al, "Hidden Technical Depth in Machine Learning Systems" https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf



Common Pitfalls Found in Research Papers [Arp et al.]

Arp et al, Do's and Don'ts of Machine Learning in Computer Security 
https://www.usenix.org/conference/usenixsecurity22/presentation/arp



Common Pitfalls Found in Research Papers [Arp et al.]

Pitfalls are prevalent even 
in top research

Arp et al, Do's and Don'ts of Machine Learning in Computer Security 
https://www.usenix.org/conference/usenixsecurity22/presentation/arp



Common Pitfalls Found in Research Papers [Arp et al.]

Pitfalls are prevalent even 
in top research

If this happens in peer-reviewed research papers, it 
surely happens also in the methods developed 
internally in companies. 

Arp et al, Do's and Don'ts of Machine Learning in Computer Security 
https://www.usenix.org/conference/usenixsecurity22/presentation/arp



Conclusion and Takeaways

● AI in security is very promising and highly beneficial
● Its usage comes with some inherent problems and weaknesses that we 

should know about
● To successfully develop ML-based solutions we need to constantly learn 

about best practices and include them in the design process



Questions?


